Cortical evidence for negative search templates

ABSTRACT A “target template”, specifying target features, is thought to benefit visual search performance. Setting up a “negative template”, specifying distractor features, should improve distractor inhibition and also benefit target detection. In the current fMRI study, subjects were required to search for a target among distractors enclosed in coloured circles. Before search, one of three colour cues appeared: a positive cue indicating the target will appear in the same colour, a negative cue indicating only distractors will appear in the same colour, or a neutral cue indicating that the same colour will not appear in the search display. fMRI results revealed down-regulation of neural processing in large parts of visual cortex following negative compared to positive cues. We further found a general attention inhibition mechanism in SPL/precuneus for neutral cues compared to positive and negative cues. These results suggest a cortical distinction between target templates, negative templates, and task-irrelevant distractor inhibition.

[1]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[2]  J Theeuwes,et al.  Visual marking beside the mark: Prioritizing selection by abrupt onsets , 2001, Perception & psychophysics.

[3]  Glyn W. Humphreys,et al.  Visual marking inhibits singleton capture , 2003, Cognitive Psychology.

[4]  Stephen Smith,et al.  Prioritizing new over old: An fMRI study of the preview search task , 2005, Human brain mapping.

[5]  A. Treisman,et al.  Conjunction search revisited. , 1990, Journal of experimental psychology. Human perception and performance.

[6]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[7]  Floris P. de Lange,et al.  Prior Expectations Evoke Stimulus Templates in the Primary Visual Cortex , 2014, Journal of Cognitive Neuroscience.

[8]  Christian N L Olivers,et al.  Spatiotemporal segregation in visual search: evidence from parietal lesions. , 2004, Journal of experimental psychology. Human perception and performance.

[9]  R. Klein,et al.  Inhibition of Return is a Foraging Facilitator in Visual Search , 1999 .

[10]  Marius V. Peelen,et al.  Preparatory Activity in Posterior Temporal Cortex Causally Contributes to Object Detection in Scenes , 2015, Journal of Cognitive Neuroscience.

[11]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[12]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[13]  Glyn W. Humphreys,et al.  Author ' s personal copy Decomposing the neural mechanisms of visual search through model-based analysis of fMRI : Top-down excitation , active ignoring and the use of saliency by the right TPJ , 2012 .

[14]  S. Engel,et al.  Colour tuning in human visual cortex measured with functional magnetic resonance imaging , 1997, Nature.

[15]  S. Kastner,et al.  A neural basis for real-world visual search in human occipitotemporal cortex , 2011, Proceedings of the National Academy of Sciences.

[16]  Derrick G. Watson,et al.  Visual marking: Evidence for inhibition using a probe-dot detection paradigm , 2000, Perception & psychophysics.

[17]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[18]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[19]  S. Yantis,et al.  Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. , 2004, Journal of neurophysiology.

[20]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[21]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[22]  Jason T. Arita,et al.  Templates for rejection: configuring attention to ignore task-irrelevant features. , 2012, Journal of experimental psychology. Human perception and performance.

[23]  G. Humphreys,et al.  When visual marking meets the attentional blink: More evidence for top-down, limited capacity inhibition , 2002 .

[24]  G. Humphreys,et al.  Automatic guidance of attention from working memory , 2008, Trends in Cognitive Sciences.

[25]  I. Toni,et al.  Shared Representations for Working Memory and Mental Imagery in Early Visual Cortex , 2013, Current Biology.

[26]  Glyn W. Humphreys,et al.  Visual marking: using time in visual selection , 2003, Trends in Cognitive Sciences.

[27]  Steven J Luck,et al.  Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal , 2010, Attention, perception & psychophysics.

[28]  H. J. Muller,et al.  SEarch via Recursive Rejection (SERR): A Connectionist Model of Visual Search , 1993, Cognitive Psychology.

[29]  Reshanne R. Reeder,et al.  Involuntary attentional capture by task-irrelevant objects that match the search template for category detection in natural scenes , 2015, Attention, Perception, & Psychophysics.

[30]  G W Humphreys,et al.  Lesioning a connectionist model of visual search: selective effects on distractor grouping. , 1992, Canadian journal of psychology.

[31]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[32]  D. Heeger,et al.  Categorical Clustering of the Neural Representation of Color , 2013, The Journal of Neuroscience.

[33]  J. Duncan,et al.  Beyond the search surface: visual search and attentional engagement. , 1992, Journal of experimental psychology. Human perception and performance.

[34]  Anastasia Kiyonaga,et al.  Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory , 2014, NeuroImage.

[35]  K. Gegenfurtner,et al.  Cortical mechanisms of colour vision , 2003, Nature Reviews Neuroscience.

[36]  G. Humphreys,et al.  The preview search task: Evidence for visual marking , 2006 .

[37]  G W Humphreys,et al.  Grouping processes in visual search: effects with single- and combined-feature targets. , 1989, Journal of experimental psychology. General.

[38]  Jens Frahm,et al.  Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation , 1996, Experimental Brain Research.

[39]  Mieke Donk Subset selective search on the basis of color and preview , 2017, Attention, perception & psychophysics.

[40]  Marvin M Chun,et al.  Visual marking: selective attention to asynchronous temporal groups. , 2002, Journal of experimental psychology. Human perception and performance.

[41]  G. Humphreys,et al.  Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. , 1997, Psychological review.

[42]  Stefan Pollmann,et al.  Task relevance modulates the cortical representation of feature conjunctions in the target template , 2017, Scientific Reports.

[43]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[44]  Alexander Borst,et al.  How does Nature Program Neuron Types? , 2008, Front. Neurosci..

[45]  P. Matthews,et al.  A neural marker of content-specific active ignoring. , 2008, Journal of experimental psychology. Human perception and performance.

[46]  Marius V Peelen,et al.  The contents of the search template for category-level search in natural scenes. , 2013, Journal of vision.

[47]  Olaf B. Paulson,et al.  Parieto–Occipital Areas Involved in Efficient Filtering in Search: A Time Course Analysis of Visual Marking using Behavioural and Functional Imaging Procedures , 2004, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[48]  Yuhong V. Jiang,et al.  What kind of memory supports visual marking? , 2004, Journal of experimental psychology. Human perception and performance.

[49]  Mieke Donk,et al.  Prioritized selection in visual search through onset capture and color inhibition: evidence from a probe-dot detection task. , 2005, Journal of experimental psychology. Human perception and performance.

[50]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[51]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[52]  Dietmar Heinke,et al.  Prioritization in visual search: Visual marking is not dependent on a mnemonic search , 2002, Perception & psychophysics.

[53]  S. Zeki Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours , 1983, Neuroscience.

[54]  G. Humphreys,et al.  Grouping processes in visual search: Effects with single- and combined-feature targets , 1989 .

[55]  Glyn W. Humphreys,et al.  Separating distractor rejection and target detection in posterior parietal cortex—an event-related fMRI study of visual marking , 2003, NeuroImage.

[56]  Harriet A. Allen,et al.  Active Ignoring in Early Visual Cortex , 2010, Journal of Cognitive Neuroscience.

[57]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[58]  G. Humphreys,et al.  An analysis of the time course of attention in preview search , 2004, Perception & psychophysics.

[59]  G. Humphreys,et al.  Search via recursive rejection (SERR): visual search for single and dual form-conjunction targets. , 1994, Journal of experimental psychology. Human perception and performance.

[60]  Glyn W. Humphreys,et al.  Visual Marking of Locations and Feature Maps: Evidence from Within-dimension Defined Conjunctions , 1999 .

[61]  Glyn W. Humphreys,et al.  Parallel Distractor Rejection as a Binding Mechanism in Search , 2012, Front. Psychology.

[62]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[63]  Anastasia Kiyonaga,et al.  A Parieto-Medial Temporal Pathway for the Strategic Control over Working Memory Biases in Human Visual Attention , 2012, The Journal of Neuroscience.

[64]  Vincent Di Lollo,et al.  Electrophysiological Indices of Target and Distractor Processing in Visual Search , 2009, Journal of Cognitive Neuroscience.

[65]  Andrew Hollingworth,et al.  Evidence for negative feature guidance in visual search is explained by spatial recoding. , 2015, Journal of experimental psychology. Human perception and performance.

[66]  G. Humphreys,et al.  Early, involuntary top-down guidance of attention from working memory. , 2005, Journal of experimental psychology. Human perception and performance.

[67]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.