Structural properties of AlGaN/GaN heterostructures on Si(111) substrates suitable for high-electron mobility transistors

Transmission electron microscopy (TEM) investigations of metal organic vapor phase deposition grown AlxGa1−xN/GaN heterostructures on Si(111) containing an AlN high-temperature buffer layer have been carried out. The structural properties at the interface and in the epilayer as well as the electronic properties suitable for a high electron mobility transistor (HEMT) were analyzed and compared with systems grown on Al2O3(0001). High resolution TEM (HRTEM) at the AlN/Si(111) interface reveals a 1.5–2.7 nm thick amorphous SiNx layer due to the high growth temperature of TAlN=1040 °C. Therefore, a grain-like GaN/AlN region extending 40–60 nm appears and it is subsequently overgrown with (0001) orientated GaN material because of geometrical selection. The residual strain at the AlN/Si(111) interface is estimated to be er=0.3±0.6% by Fourier filtering of HRTEM images and a moire fringe analysis. This indicates almost complete relaxation of the large mismatch f(AlN/Si)=+23.4% which seems to be supported by the S...

[1]  Manijeh Razeghi,et al.  Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates , 1999 .

[2]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[3]  James S. Speck,et al.  Structural and optical properties of GaN laterally overgrown on Si(111) by metalorganic chemical vapor deposition using an AlN buffer layer , 1999 .

[4]  Nicolas Grandjean,et al.  From visible to white light emission by GaN quantum dots on Si(111) substrate , 1999 .

[5]  G. A. Slack,et al.  Thermal expansion of some diamondlike crystals , 1975 .

[6]  Andrew J. Steckl,et al.  Green emission from Er-doped GaN grown by molecular beam epitaxy on Si substrates , 1998 .

[7]  L. Sugiura,et al.  Dislocation motion in GaN light-emitting devices and its effect on device lifetime , 1997 .

[8]  E. Monroy,et al.  Study of high quality AlN layers grown on Si(111) substrates by plasma-assisted molecular beam epitaxy , 1997 .

[9]  James S. Speck,et al.  HIGH MOBILITY TWO-DIMENSIONAL ELECTRON GAS IN ALGAN/GAN HETEROSTRUCTURES GROWN BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY , 1999 .

[10]  A. Chernov Modern Crystallography III , 1984 .

[11]  Eric Sven Hellman,et al.  The Polarity of GaN: a Critical Review , 1998 .

[12]  R. Reeber,et al.  Thermal Expansion Of GaN And Ain , 1997 .

[13]  S. Bass,et al.  Constituent quarks and g1 , 1999, hep-ph/9902280.

[14]  L. Romano,et al.  Structure of GaN films grown by hydride vapor phase epitaxy , 1997 .

[15]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[16]  A. Barbier,et al.  Growth of aluminum nitride on (111) silicon: Microstructure and interface structure , 1998 .

[17]  Isamu Akasaki,et al.  The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer , 1993 .

[18]  P. Kozodoy,et al.  Bias dependent microwave performance of AlGaN/GaN MODFET's up to 100 V , 1997, IEEE Electron Device Letters.

[19]  H. Okumura,et al.  GAN HETEROEPITAXIAL GROWTH ON SILICON NITRIDE BUFFER LAYERS FORMED ON SI (111) SURFACES BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY , 1998 .

[20]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[21]  Isamu Akasaki,et al.  Widegap Column‐ III Nitride Semiconductors for UV/Blue Light Emitting Devices , 1994 .

[22]  W. Richter,et al.  Epitaxial growth of AlN and GaN on Si(1 1 1) by plasma-assisted molecular beam epitaxy , 1999 .

[23]  Oliver Ambacher,et al.  Quantitative Transmission Electron Microscopy Investigation of the Relaxation by Misfit Dislocations Confined at the Interface of GaN/Al2O3(0001) , 1998 .

[24]  Joan M. Redwing,et al.  AlGaN/GaN HEMTs grown on SiC substrates , 1997 .

[25]  Isamu Akasaki,et al.  High‐quality GaInN/GaN multiple quantum wells , 1996 .

[26]  Supratik Guha,et al.  Ultraviolet and violet GaN light emitting diodes on silicon , 1998 .

[27]  Fernando Ponce,et al.  High dislocation densities in high efficiency GaN‐based light‐emitting diodes , 1995 .

[28]  A. Rosenauer,et al.  Spatial Confinement of Misfit Dislocations at the Interfaces of Epitaxial CdSe/GaAs(111) and ZnTe/GaAs(111) Studied by TEM , 1993 .

[29]  J. Massies,et al.  GaN grown on Si(111) substrate: From two-dimensional growth to quantum well assessment , 1999 .

[30]  Lester F. Eastman,et al.  AlGaN/GaN heterostructures on insulating AlGaN nucleation layers , 1999 .

[31]  Henryk Temkin,et al.  HIGH QUALITY GAN GROWN ON SI(111) BY GAS SOURCE MOLECULAR BEAM EPITAXY WITH AMMONIA , 1999 .

[32]  Henryk Temkin,et al.  High quality GaN–InGaN heterostructures grown on (111) silicon substrates , 1996 .

[33]  J. M. Gibson,et al.  The effects of elastic relaxation on transmission electron microscopy studies of thinned composition-modulated materials , 1986 .

[34]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[35]  Isamu Akasaki,et al.  Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters , 1997 .

[36]  James S. Speck,et al.  Defect structure of metal‐organic chemical vapor deposition‐grown epitaxial (0001) GaN/Al2O3 , 1996 .

[37]  O. Ambacher,et al.  High electron mobility AlGaN/GaN heterostructure on (111) Si , 2000 .

[38]  Andrew J. Steckl,et al.  Red light emission by photoluminescence and electroluminescence from Pr-doped GaN on Si substrates , 1999 .

[39]  H. Amano,et al.  Structural and Optical Properties of Nitride-Based Heterostructure and Quantum-Well Structure , 1996 .

[40]  D. Bimberg,et al.  Low-pressure metal organic chemical vapor deposition of GaN on silicon(111) substrates using an AlAs nucleation layer , 1999 .

[41]  H. Amano,et al.  Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE , 1991 .

[42]  M. Shur,et al.  High transconductance heterostructure field‐effect transistors based on AlGaN/GaN , 1996 .