Energy storage and the evolution of population dynamics.

We explore the mutual dependence of life history evolution and population dynamics by modeling a structured rotifer population that preys on a dynamic food supply. We focus on the ecological role of energy storage. A physiologically based submodel describes how individual predators allocate assimilated energy among growth, reproduction, and storage. We use invasibility analyses to predict evolutionary stable strategies for energy allocation. Various proxy measures of fitness based on measurable biological quantities, such as average population size or average per-capita fecundity, fail to predict evolutionary stable strategies. The predicted strategies indicate that selection strongly favors storage allocation for juveniles, but only for adults when prey densities are high. With the evolution of energy storage, population dynamics can shift from aperiodic to stable cycles without any need to invoke group selection.

[1]  Jim M Cushing,et al.  ESTIMATING CHAOS AND COMPLEX DYNAMICS IN AN INSECT POPULATION , 2001 .

[2]  L. Mueller Evolution of accelerated senescence in laboratory populations of Drosophila. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Kirk Egg size, offspring quality and food level in planktonic rotifers , 1997 .

[4]  R. Nisbet,et al.  Dynamic Models of Growth and Reproduction of the Mussel Mytilus edulis L. , 1990 .

[5]  K. Kirk LIFE-HISTORY RESPONSES TO VARIABLE ENVIRONMENTS: STARVATION AND REPRODUCTION IN PLANKTONIC ROTIFERS , 1997 .

[6]  André M. de Roos,et al.  A Gentle Introduction to Physiologically Structured Population Models , 1997 .

[7]  B. Ebenman,et al.  Evolution of stable population dynamics through natural selection , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  C. Guisande,et al.  The cost of reproduction in the Rotifer Brachionus calyciflorus Pallas , 1993 .

[9]  Prendergast,et al.  The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles , 1998 .

[10]  G. Fox,et al.  Chaos and evolution. , 1995, Trends in ecology & evolution.

[11]  B T Grenfell,et al.  Noisy Clockwork: Time Series Analysis of Population Fluctuations in Animals , 2001, Science.

[12]  M. Doebeli,et al.  Evolution of simple population dynamics , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  R. Costantino,et al.  Experimentally induced transitions in the dynamic behaviour of insect populations , 1995, Nature.

[14]  William Gurney,et al.  Experimental testing of dynamic energy budget models , 1998 .

[15]  W. Gurney,et al.  Parameter evolution in a laboratory insect population , 1988 .

[16]  O. Diekmann,et al.  Studying the Dynamics of Structured Population Models: A Versatile Technique and Its Application to Daphnia , 1992, The American Naturalist.

[17]  F J Ayala,et al.  Density-dependent natural selection and trade-offs in life history traits. , 1991, Science.

[18]  Michael E. Gilpin,et al.  Chaos, Asymmetric Growth and Group Selection for Dynamical Stability , 1980 .

[19]  A new demographic function maximized by life-history evolution , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  A. Joshi,et al.  DOES POPULATION STABILITY EVOLVE , 2000 .

[21]  Sebastiaan A.L.M. Kooijman,et al.  Dynamic Energy and Mass Budgets in Biological Systems , 2000 .

[22]  P. Abrams The Evolution of Predator-Prey Interactions: Theory and Evidence , 2000 .

[23]  S. Ellner,et al.  STATE‐DEPENDENT ENERGY ALLOCATION IN VARIABLE ENVIRONMENTS: LIFE HISTORY EVOLUTION OF A ROTIFER , 2002 .

[24]  Alasdair I. Houston,et al.  Models of Adaptive Behaviour: An Approach Based on State , 1999 .

[25]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[26]  M. Gatto,et al.  Chaotic population dynamics can result from natural selection , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  Resting eggs in rotifers , 1983 .

[28]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[29]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[30]  A. Joshi,et al.  DIRECTIONAL AND STABILIZING DENSITY‐DEPENDENT NATURAL SELECTION FOR PUPATION HEIGHT IN DROSOPHILA MELANOGASTER , 1993, Evolution; international journal of organic evolution.

[31]  S. Stearns,et al.  The Evolution of Life Histories , 1992 .

[32]  J. J. Gilbert,et al.  Body Size, Food Concentration, and Population Growth in Planktonic Rotifers , 1985 .

[33]  U. Halbach,et al.  Quantitative relations between phytoplankton and the population dynamics of the rotifer Brachionus calyciflorus Pallas Results of laboratory experiments and field studies , 1974 .

[34]  A. Grant,et al.  ELASTICITY ANALYSIS FOR DENSITY‐DEPENDENT POPULATIONS IN STOCHASTIC ENVIRONMENTS , 2000 .

[35]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[36]  R M Nisbet,et al.  A Dynamic Energy Budget model based on partitioning of net production , 2000, Journal of mathematical biology.

[37]  S. Ellner,et al.  Egg size evolution and energetic constraints on population dynamics. , 2001, Theoretical population biology.

[38]  U. Halbach Die ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria) , 1970, Oecologia.

[39]  A. Grant,et al.  OPTIMAL REPRODUCTIVE EFFORT IN STOCHASTIC, DENSITY‐DEPENDENT ENVIRONMENTS , 1999, Evolution; international journal of organic evolution.

[40]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.