Brief presentation enhances various simultaneous contrast effects.

Kaneko and Murakami (2012) demonstrated that simultaneous contrast for brightness and color (chromatic saturation) were enhanced by flashing the stimulus very briefly (10 ms). Here we examined whether this effect of duration generalized to other visual features. Tilt illusion and simultaneous hue contrast were both shown to be much stronger with a stimulus duration of 10 ms compared with 500 ms. The similar temporal dynamics for simultaneous contrast across visual features suggest common underlying principles.

[1]  A. Gilchrist,et al.  Grouping Factors and the Reverse Contrast Illusion , 2015, Perception.

[2]  Kenichi Ueno,et al.  Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging , 2015, Cerebral cortex.

[3]  M. McCourt,et al.  Dissecting the influence of the collinear and flanking bars in White's effect. , 2015, Journal of vision.

[4]  Daniel R. Little,et al.  The Categorisation of Non-Categorical Colours: A Novel Paradigm in Colour Perception , 2013, PloS one.

[5]  I. Murakami,et al.  Flashed stimulation produces strong simultaneous brightness and color contrast. , 2012, Journal of vision.

[6]  M. McCourt,et al.  When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component , 2012, Vision Research.

[7]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[8]  Colin W. G. Clifford,et al.  Using colour to disambiguate contrast and assimilation in White's Effect , 2010 .

[9]  Alan E. Robinson,et al.  Brief presentations reveal the temporal dynamics of brightness induction and White’s illusion , 2008, Vision Research.

[10]  M. McCourt,et al.  Nearly instantaneous brightness induction. , 2008, Journal of vision.

[11]  Ichiro Kuriki,et al.  Aftereffect of contrast adaptation to a chromatic notched-noise stimulus. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  S. Anstis,et al.  Induced movement: the flying bluebottle illusion. , 2006, Journal of vision.

[13]  M. McCourt,et al.  A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization , 2004, Vision Research.

[14]  John J. Foxe,et al.  Brightening prospects for early cortical coding of perceived luminance: a high-density electrical mapping study. , 2004 .

[15]  Branka Spehar,et al.  Colour and luminance selectivity of spatial and temporal interactions in orientation perception , 2003, Vision Research.

[16]  R. Shapley,et al.  Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. , 2003, Journal of neurophysiology.

[17]  Colin W G Clifford,et al.  Interactions between color and luminance in the perception of orientation. , 2003, Journal of vision.

[18]  T. Sejnowski,et al.  Representation of Color Stimuli in Awake Macaque Primary Visual Cortex , 2003, Neuron.

[19]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[20]  Michael A. Webster,et al.  Neural adjustments to image blur , 2002, Nature Neuroscience.

[21]  P. Lennie,et al.  Information Conveyed by Onset Transients in Responses of Striate Cortical Neurons , 2001, The Journal of Neuroscience.

[22]  Michael A. Webster,et al.  Simultaneous blur contrast , 2001, IS&T/SPIE Electronic Imaging.

[23]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[24]  M. Webster,et al.  Variations in normal color vision. II. Unique hues. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  H. Komatsu,et al.  Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey , 2000, The European journal of neuroscience.

[26]  C Wehrhahn,et al.  Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. , 2000, Journal of neurophysiology.

[27]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[28]  D. Macleod,et al.  Color appearance depends on the variance of surround colors , 1997, Current Biology.

[29]  S. Hochstein,et al.  Task difficulty and the specificity of perceptual learning , 1997, Nature.

[30]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[31]  R. L. Valois,et al.  Hue Scaling of Isoluminant and Cone-specific Lights , 1997, Vision Research.

[32]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[33]  H. Tamura,et al.  Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. , 1996, The Journal of physiology.

[34]  H. Tamura,et al.  Broad-tuned chromatic inputs to color-selective neurons in the monkey visual cortex. , 1994, Journal of neurophysiology.

[35]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[36]  F. W. Cornelissen,et al.  Spatial interactions in color vision depend on distances between boundaries , 1991, Naturwissenschaften.

[37]  Gerald Westhhmer,et al.  Simultaneous orientation contrast for lines in the human fovea , 1990, Vision Research.

[38]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[39]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  J A Solomon,et al.  Texture interactions determine perceived contrast , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Peter Wenderoth,et al.  The effects of exposure duration and surrounding frames on direct and indirect tilt aftereffects and illusions , 1989, Perception & psychophysics.

[42]  P. Wenderoth,et al.  The different mechanisms of the direct and indirect tilt illusions , 1988, Vision Research.

[43]  J. Harris,et al.  Spatial frequency and duration effects on the tilt illusion and orientation acuity , 1988, Vision Research.

[44]  Michael A. Webster,et al.  Temporal properties of brightness and color induction , 1986, Vision Research.

[45]  Jeremy M. Wolfe,et al.  Short test flashes produce large tilt aftereffects , 1984, Vision Research.

[46]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[47]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  William B. Cowan,et al.  An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates , 1983, SIGGRAPH.

[49]  B. Rogers,et al.  Simultaneous and Successive Contrast Effects in the Perception of Depth from Motion-Parallax and Stereoscopic Information , 1982, Perception.

[50]  Svein Magnussen,et al.  Linear summation of tilt illusion and tilt aftereffect , 1980, Vision Research.

[51]  B I O'Toole,et al.  Exposure-Time and Spatial-Frequency Effects in the Tilt Illusion , 1979, Perception.

[52]  M. White,et al.  A New Effect of Pattern on Perceived Lightness , 1979, Perception.

[53]  P. Wenderoth,et al.  The tilt illusion: Repulsion and attraction effects in the oblique meridian , 1977, Vision Research.

[54]  A. Gilchrist Perceived lightness depends on perceived spatial arrangement. , 1977, Science.

[55]  M. Wright,et al.  Spatial and temporal properties of ‘sustained’ and ‘transient’ neurones in area 17 of the cat's visual cortex , 1975, Experimental Brain Research.

[56]  S. Klein,et al.  The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings. , 1974, Vision research.

[57]  M. Georgeson,et al.  Spatial Frequency Selectivity of a Visual Tilt Illusion , 1973, Nature.

[58]  J. Walraven Spatial characteristics of chromatic induction; the segregation of lateral effects from straylight artefacts. , 1973, Vision research.

[59]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[60]  C. Blakemore,et al.  Lateral Inhibition between Orientation Detectors in the Human Visual System , 1970, Nature.

[61]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[62]  Y. Hsia,et al.  Compensatory hue shift in simultaneous color contrast as a function of separation between inducing and test fields. , 1966, Journal of experimental psychology.

[63]  E. G. Heinemann,et al.  Simultaneous brightness induction as a function of inducing and test-field luminances. , 1955, Journal of experimental psychology.

[64]  J. Gibson Adaptation, after-effect, and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the after-effect. , 1937 .

[65]  K. Duncker,et al.  Über induzierte Bewegung , 1929 .

[66]  Thomas Wachtler,et al.  "Tilt" in color space: Hue changes induced by chromatic surrounds. , 2015, Journal of vision.

[67]  D. Tolhurst,et al.  Non-linearities of temporal summation in neurones in area 17 of the cat , 2004, Experimental Brain Research.

[68]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[69]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[70]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[71]  M. Wright,et al.  Evidence for "sustained" and "transient" neurones in the cat's visual cortex. , 1974, Vision research.

[72]  R Over,et al.  Orientation illusion and masking in central and peripheral vision. , 1972, Journal of experimental psychology.