Investigation of the environment around close-in transiting exoplanets using cloudy

It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1-D slabs of gas in coronal equilibrium with varying densities ($10^{4}-10^{8} \, {\rm cm^{-3}}$) and temperatures ($2000-10^{6} \ {\rm K}$) illuminated by a solar spectrum. For slabs at coronal temperatures ($10^{6} \ {\rm K}$) and densities even orders of magnitude larger than expected for the compressed stellar wind ($10^{4}-10^{5} \, {\rm cm^{-3}}$), we find optical depths orders of magnitude too small ($> 3\times10^{-7}$) to explain the $\sim3\%$ UV transit depths seen with Hubble. Using this result and our modeling of slabs with lower temperatures ($2000-10^4 {\rm K}$), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originating in the planet, as the stellar wind is too highly ionized. A corollary of this result is that transport of neutral atoms from the denser planetary atmosphere outward must be a primary consideration when constructing physical models. In the second part of this paper, additional calculations using CLOUDY are carried out to model a slab of planetary gas in radiative and thermal equilibrium with the stellar radiation field. Promising sources of opacity from the X-ray to radio wavelengths are discussed, some of which are not yet observed.

[1]  P. Schneider,et al.  TPCI: The PLUTO-CLOUDY Interface , 2015, 1502.06517.

[2]  Alain Lecavelier des Etangs,et al.  3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions , 2013, 1308.0561.

[3]  L. Koesterke,et al.  A DETECTION OF Hα IN AN EXOPLANETARY EXOSPHERE , 2012, 1203.4484.

[4]  H. Lammer,et al.  Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b , 2008, Nature.

[5]  C. Moutou,et al.  On the environment surrounding close-in exoplanets , 2015, 1503.05711.

[6]  D. Bisikalo,et al.  Types of gaseous envelopes of “hot Jupiter” exoplanets , 2013, 1311.4441.

[7]  F. Neubauer,et al.  Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions , 2013 .

[8]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[9]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[10]  P. J. Wheatley,et al.  Physical properties and radius variations in the HAT-P-5 planetary system from simultaneous four-colour photometry , 2012, 1202.6255.

[11]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[12]  B. Ercolano,et al.  Magnetospheres of hot Jupiters: hydrodynamic models and ultraviolet absorption , 2015, 1512.01555.

[13]  G. Ferland,et al.  STOUT: CLOUDY’S ATOMIC AND MOLECULAR DATABASE , 2015, 1506.01741.

[14]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements , 2000 .

[15]  G. Ballester,et al.  Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b , 2008, 0802.3864.

[16]  T. Barman,et al.  OPTICAL HYDROGEN ABSORPTION CONSISTENT WITH A THIN BOW SHOCK LEADING THE HOT JUPITER HD 189733B , 2015, 1507.05916.

[17]  G. Hebrard,et al.  Evaporation of the planet HD 189733b observed in H I Lyman-α , 2010, 1003.2206.

[18]  R. G. West,et al.  Near-UV Absorption , Chromospheric Activity , and Star-Planet Interactions in the WASP-12 system . 1 , 2022 .

[19]  P. Rojo,et al.  Ground-based detection of calcium and possibly scandium and hydrogen in the atmosphere of HD 209458b , 2013, 1306.5475.

[20]  Maxim L. Khodachenko,et al.  Magnetic moment and plasma environment of HD 209458b as determined from Lyα observations , 2014, Science.

[21]  Ch. Helling,et al.  EARLY UV INGRESS IN WASP-12b: MEASURING PLANETARY MAGNETIC FIELDS , 2010, 1009.5947.

[22]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[23]  R. G. West,et al.  METALS IN THE EXOSPHERE OF THE HIGHLY IRRADIATED PLANET WASP-12b , 2010, 1005.3656.

[24]  D. Ehrenreich,et al.  Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry , 2010, 1008.4795.

[25]  V. S. Dhillon,et al.  Optical transmission photometry of the highly inflated exoplanet WASP-17b , 2013, 1310.3893.

[26]  Markus J. Aschwanden Physics of the Solar Corona , 2004 .

[27]  Markus J. Aschwanden,et al.  Physics of the Solar Corona: An Introduction with Problems and Solutions , 2005 .

[28]  A. Vidotto,et al.  Transit variability in bow shock-hosting planets , 2011, 1102.1559.

[29]  D. Bisikalo,et al.  Mass-loss rates of “hot-Jupiter” exoplanets with various types of gaseous envelopes , 2014, 1609.08506.

[30]  Kevin France,et al.  OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b , 2010, 1005.1633.

[31]  K. Wood,et al.  Exoplanet transit variability: bow shocks and winds around HD 189733b , 2013, 1309.2938.

[32]  L. Fossati,et al.  The shocking transit of WASP-12b: modelling the observed early ingress in the near-ultraviolet , 2011, 1106.2935.

[33]  K. Poppenhaeger,et al.  TRANSIT OBSERVATIONS OF THE HOT JUPITER HD 189733b AT X-RAY WAVELENGTHS , 2013, 1306.2311.

[34]  C. Copperwheat,et al.  Transmission photometry of WASP-12b: simultaneous measurement of the planetary radius in three bands , 2013, 1305.4166.

[35]  W. C. Martin,et al.  Handbook of Basic Atomic Spectroscopic Data , 2005 .

[36]  H. Lammer,et al.  THREE-DIMENSIONAL GAS DYNAMIC SIMULATION OF THE INTERACTION BETWEEN THE EXOPLANET WASP-12b AND ITS HOST STAR , 2012, 1212.2779.

[37]  Kathryn I. Cunningham,et al.  Near-UV and optical observations of the transiting exoplanet TrES-3b , 2012, 1211.4895.

[38]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .

[39]  Lotfi Ben-Jaffel,et al.  Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b , 2013, 1303.4232.

[40]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[41]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[42]  C. Helling,et al.  MASS TRANSFER, TRANSITING STREAM, AND MAGNETOPAUSE IN CLOSE-IN EXOPLANETARY SYSTEMS WITH APPLICATIONS TO WASP-12 , 2010, 1005.4497.

[43]  Lotfi Ben-Jaffel,et al.  TRANSIT OF EXOMOON PLASMA TORI: NEW DIAGNOSIS , 2014, 1404.1084.

[44]  P. Schneider,et al.  Simulating the escaping atmospheres of hot gas planets in the solar neighborhood , 2015, 1511.09341.

[45]  Antonino Francesco Lanza Stellar coronal magnetic fields and star-planet interaction , 2009, 0906.1738.

[46]  H. Mason,et al.  CHIANTI—AN ATOMIC DATABASE FOR EMISSION LINES. XII. VERSION 7 OF THE DATABASE , 2012 .

[47]  G. Belle 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun , 2008 .

[48]  Zhi-Yun Li,et al.  HOT JUPITER MAGNETOSPHERES , 2010, 1011.0017.

[49]  Zhi-Yun Li,et al.  AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION , 2016, 1601.05302.

[50]  N. Badnell,et al.  Collisional Ionization Equilibrium for Optically Thin Plasmas. I. Updated Recombination Rate Coefficients for Bare through Sodium-like Ions , 2006, astro-ph/0604363.

[51]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[52]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[53]  C. Morisset pyCloudy: Tools to manage astronomical Cloudy photoionization code , 2013 .

[54]  M. R. Burleigh,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE NUV TRANSIT OF WASP-12b , 2015, 1502.07489.

[55]  E. Chiang,et al.  Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen , 2012, 1206.5003.

[56]  Robert T. Zellem,et al.  XO-2b: A HOT JUPITER WITH A VARIABLE HOST STAR THAT POTENTIALLY AFFECTS ITS MEASURED TRANSIT DEPTH , 2015, 1505.01063.

[57]  Ch. Helling,et al.  Prospects for detection of exoplanet magnetic fields through bow‐shock observations during transits , 2010, 1011.3455.

[58]  C. Selhorst,et al.  PLANETARY TRANSITS WITH THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY RADIO INTERFEROMETER , 2013 .

[59]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[60]  K. Wood,et al.  Shock formation around planets orbiting M‐dwarf stars , 2011, 1112.1512.

[61]  F. R. Harnden,et al.  Results from an extensive Einstein stellar survey. , 1981 .

[62]  J. C. McConnell,et al.  Magnesium in the atmosphere of the planet HD 209458 b: observations of the thermosphere-exosphere transition region , 2013, 1310.8104.

[63]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[64]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b , 2013, 1309.5261.

[65]  P. J. Wheatley,et al.  Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b , 2012, 1206.6274.

[66]  India,et al.  THE 2013 RELEASE OF CLOUDY , 2013, 1302.4485.

[67]  G. Withbroe The temperature structure, mass, and energy flow in the corona and inner solar wind , 1988 .

[68]  Robert F. Cahalan,et al.  The Solar Radiation and Climate Experiment (SORCE) Mission for the NASA Earth Observing System (EOS) , 2005 .

[69]  M. G. O'Mullane,et al.  Dielectronic recombination data for dynamic finite-density plasmas - I. Goals and methodology , 2003, astro-ph/0304273.

[70]  T. Koskinen,et al.  Thermal escape from extrasolar giant planets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  Alain Lecavelier des Etangs,et al.  Atmospheric escape from HD 189733b observed in H I Lyman-α: detailed analysis of HST/STIS September 2011 observations , 2013, 1301.6030.

[72]  J. F. Mckenzie,et al.  The fast solar wind , 1997 .

[73]  Zhi-Yun Li,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF HOT JUPITER UPPER ATMOSPHERES , 2014, 1404.5817.

[74]  Photometric observation of HAT-P-16b in the near-UV , 2013, 1310.5397.