Data-adaptive harmonic spectra and multilayer Stuart-Landau models.

Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey, furthermore, a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled-provided the decay of temporal correlations is sufficiently well-resolved-within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.

[1]  Philipp Hövel,et al.  Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Prashant D. Sardeshmukh,et al.  The Optimal Growth of Tropical Sea Surface Temperature Anomalies , 1995 .

[3]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[4]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[5]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[6]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[7]  Christoph W. Ueberhuber,et al.  Spectral decomposition of real circulant matrices , 2003 .

[8]  P. Hövel,et al.  Control of self-organizing nonlinear systems , 2016 .

[9]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[10]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Michael Ghil,et al.  Data-Adaptive Harmonic Decomposition and Stochastic Modeling of Arctic Sea Ice , 2018 .

[12]  Variations of the solution to a stochastic heat equation , 2005, math/0601007.

[13]  Panagiotis Stinis,et al.  Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions , 2007, Proceedings of the National Academy of Sciences.

[14]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[15]  Alexandre J. Chorin,et al.  Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics , 2015, Proceedings of the National Academy of Sciences.

[16]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint Flour XIV, 1984 , 1986 .

[17]  Jerzy Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Appendices , 1996 .

[18]  J. Kurths,et al.  Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. , 2016, Chaos.

[19]  Michael Ghil,et al.  Stochastic climate dynamics: Random attractors and time-dependent invariant measures , 2011 .

[20]  Michael Ghil,et al.  Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances , 2014, Proceedings of the National Academy of Sciences.

[21]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[22]  Thomas Hellman PHIL , 2018, Encantado.

[23]  M. Ghil,et al.  Low-Dimensional Galerkin Approximations of Nonlinear Delay Differential Equations , 2015, 1509.02945.

[24]  J. Neelin,et al.  First-Passage-Time Prototypes for Precipitation Statistics , 2014 .

[25]  Michael Ghil,et al.  Predicting stochastic systems by noise sampling, and application to the El Niño-Southern Oscillation , 2011, Proceedings of the National Academy of Sciences.

[26]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[27]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[28]  Pierre Collet,et al.  Concepts and Results in Chaotic Dynamics: A Short Course , 2006 .

[29]  Ronald R. Coifman,et al.  Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems , 2008, Multiscale Model. Simul..

[30]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[31]  P. Bousso,et al.  DISC , 2012 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Alexandre J. Chorin,et al.  Prediction from Partial Data, Renormalization, and Averaging , 2006, J. Sci. Comput..

[34]  Andrey Gavrilov,et al.  Principal nonlinear dynamical modes of climate variability , 2015, Scientific Reports.

[35]  Michael Ghil,et al.  Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models , 2015 .

[36]  Jan van Neerven,et al.  The Asymptotic Behaviour of Semigroups of Linear Operators , 1996 .

[37]  Michael Ghil,et al.  Multilevel Regression Modeling of Nonlinear Processes: Derivation and Applications to Climatic Variability , 2005 .

[38]  John Harb,et al.  Multiscale Modeling, Simulation, and Design 2 , 2017 .

[39]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[40]  Andrew J. Majda,et al.  Physics constrained nonlinear regression models for time series , 2012 .

[41]  Mickaël D. Chekroun,et al.  Approximation of Stochastic Invariant Manifolds , 2015 .

[42]  Andrew J. Majda,et al.  Nonlinear Laplacian spectral analysis: capturing intermittent and low‐frequency spatiotemporal patterns in high‐dimensional data , 2012, Stat. Anal. Data Min..

[43]  Michael Ghil,et al.  Data-driven non-Markovian closure models , 2014, 1411.4700.

[44]  Ivan Nourdin,et al.  Ito's- and Tanaka's-type formulae for the stochastic heat equation: The linear case , 2005 .

[45]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Lluís Quer-Sardanyons,et al.  Stochastic integrals for spde's: a comparison , 2010, 1001.0856.

[47]  Jeffrey Danciger,et al.  A min–max theorem for complex symmetric matrices , 2006 .

[48]  Kuolin Hsu,et al.  Artificial Neural Network Modeling of the Rainfall‐Runoff Process , 1995 .

[49]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[50]  Mickaël D. Chekroun,et al.  Stochastic parameterizing manifolds and non-markovian reduced equations : stochastic manifolds for nonlinear SPDEs II/ Mickaël D. Chekroun, Honghu Liu, Shouhong Wang , 2014 .

[51]  B. M. Fulk MATH , 1992 .

[52]  Jeff Irion,et al.  Applied and computational harmonic analysis on graphs and networks , 2015, SPIE Optical Engineering + Applications.

[53]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[54]  W. Marsden I and J , 2012 .

[55]  Valerio Lucarini,et al.  Disentangling multi-level systems: averaging, correlations and memory , 2011, 1110.6113.

[56]  David C. Lay,et al.  Linear Algebra and Its Applications, 4th Edition , 1994 .

[57]  朱克勤 Journal of Fluid Mechanics创刊50周年 , 2006 .

[58]  Cécile Penland,et al.  Random Forcing and Forecasting Using Principal Oscillation Pattern Analysis , 1989 .

[59]  Gary Froyland,et al.  A Computational Method to Extract Macroscopic Variables and Their Dynamics in Multiscale Systems , 2013, SIAM J. Appl. Dyn. Syst..

[60]  J. Neelin,et al.  A Stochastic Model for the Transition to Strong Convection , 2011 .

[61]  Brian D. Ewald,et al.  On modelling physical systems with stochastic models: diffusion versus Lévy processes , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[63]  Mehdi Khashei,et al.  An artificial neural network (p, d, q) model for timeseries forecasting , 2010, Expert Syst. Appl..

[64]  R. Temam,et al.  The Stampacchia maximum principle for stochastic partial differential equations and applications , 2016 .

[65]  Valerio Lucarini,et al.  Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach , 2012, Journal of Statistical Physics.

[66]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[67]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[68]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[69]  Arup Bose,et al.  Limiting spectral distribution of a special circulant , 2002 .

[70]  Electronic Transactions on Numerical Analysis Volume 1 , 1993 , 1998 .

[71]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[72]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[73]  Dmitri Kondrashov,et al.  Stochastic modeling of decadal variability in ocean gyres , 2015 .

[74]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[75]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.