Properties of linear systems in PDE-constrained optimization. Part I: Distributed control 1

Optimization problems with constraints that contain a partial differential equation arise widely in many areas of science. In this paper, we consider distributed control problems in which the 2- and 3-dimensional Poisson problem is the PDE. If a discretize-then-optimization approach is used to solve the optimization problem, then a large dimensional, symmetric and indefinite linear system must be solved. In general, distributed control problems include a regularization term, the size of which is determined by a real value known as the regularization parameter. The spectral properties and, hence, the condition number of the linear system are highly dependent on the size of this regularization parameter. We derive intervals that contain the eigenvalues of the linear systems and, using these, we are able to show that if the regularization parameter is larger than a certain value, then backward-stable direct methods will compute solutions to the discretized optimization problem that have relative errors of the order of machine precision: changing the value of the regularization parameter within this interval will have negligible effect on the accuracy but the condition number of the system may have dramatically changed. We also analyse the spectral properties of the Schur complement and reduced systems derived via the nullspace method. Throughout the paper, we complement the theoretical results with numerical results.

[1]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[2]  Philip E. Gill,et al.  Practical optimization , 1981 .

[3]  J. Demmel,et al.  The strong stability of algorithms for solving symmetric linear systems , 1989 .

[4]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[5]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[6]  K. Kunisch,et al.  Augmented Lagrangian--SQP Methods for Nonlinear OptimalControl Problems of Tracking Type , 1996 .

[7]  S. H. Cheng,et al.  A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..

[8]  Helmut Maurer,et al.  Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints: Part 1. Boundary Control , 2000, Comput. Optim. Appl..

[9]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[10]  E. Haber,et al.  Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .

[11]  Nicholas I. M. Gould,et al.  On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..

[12]  E. Haber,et al.  Grid refinement and scaling for distributed parameter estimation problems , 2001 .

[13]  S. Scott Collis,et al.  Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .

[14]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[15]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[16]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[17]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[18]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[19]  A. Wathen Chebyshev semi-iteration in Preconditioning , 2008 .

[20]  Nicholas I. M. Gould,et al.  Spectral Analysis of Saddle Point Matrices with Indefinite Leading Blocks , 2009, SIAM J. Matrix Anal. Appl..

[21]  Andrew J. Wathen,et al.  Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..