Soliton solutions to a class of relativistic nonlinear Schrödinger equations

By using a change of variables, we get new equations, whose respective associated functionals are well defined in H 1 ( R N ) and satisfy the geometric hypotheses of the mountain pass theorem. Using this fact, we obtain a nontrivial solution.

[1]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[2]  Jun Yang,et al.  Positive solution to a class of relativistic nonlinear Schrödinger equation , 2014 .

[3]  Yaotian Shen,et al.  Multiple solutions for quasilinear Schrödinger equations involving critical exponent , 2010 .

[4]  Rainer W. Hasse,et al.  A general method for the solution of nonlinear soliton and kink Schrödinger equations , 1980 .

[5]  Yaotian Shen,et al.  Soliton solutions for generalized quasilinear Schrödinger equations , 2013 .

[6]  E. W. Laedke,et al.  Evolution theorem for a class of perturbed envelope soliton solutions , 1983 .

[7]  Olímpio H. Miyagaki,et al.  Soliton solutions for quasilinear Schrödinger equations with critical growth , 2010 .

[8]  Jiaquan Liu,et al.  Soliton solutions for quasilinear Schrödinger equations, II , 2003 .

[9]  W. Zakrzewski,et al.  Static solutions of a D-dimensional modified nonlinear Schrödinger equation , 2003 .

[10]  Susumu Kurihara,et al.  Large-Amplitude Quasi-Solitons in Superfluid Films , 1981 .

[11]  A. M. Sergeev,et al.  One-dimensional collapse of plasma waves , 1978 .

[12]  L. Jeanjean,et al.  A remark on least energy solutions in RN , 2002 .

[13]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[14]  Mathieu Colin,et al.  Solutions for a quasilinear Schr"odinger equation: a dual approach , 2004 .

[15]  Jean-Claude Saut,et al.  Global Existence of Small Solutions to a Relativistic Nonlinear Schrödinger Equation , 1997 .

[16]  Electrons on hexagonal lattices and applications to nanotubes , 2003, cond-mat/0304181.

[17]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[18]  Yinbin Deng,et al.  Nodal soliton solutions for generalized quasilinear Schrödinger equations , 2014 .

[19]  G. Quispel,et al.  Equation of motion for the Heisenberg spin chain , 1981 .