Numerical simulation of laminar reacting flows with complex chemistry

We present an adaptive algorithm for low Mach number reacting flows with complex chemistry. Our approach uses a form of the low Mach number equations that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm uses an operator-split treatment of stiff reaction terms and includes effects of differential diffusion. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the performance of the method on both premixed and non-premixed flames. M This article features multimedia enhancements available from the abstract page in the online journal; see www.iop.org.

[1]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[2]  John B. Bell,et al.  An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .

[3]  Ann S. Almgren,et al.  An adaptive level set approach for incompressible two-phase flows , 1997 .

[4]  Ann S. Almgren,et al.  A higher-order projection method for the simulation of unsteady turbulent nonpremixed combustion in an industrial burner , 1994 .

[5]  de Hc Rick Lange,et al.  Numerical flow modelling in a locally refined grid , 1994 .

[6]  Michael Frenklach,et al.  GRI-MECH: An optimized detailed chemical reaction mechanism for methane combustion. Topical report, September 1992-August 1995 , 1995 .

[7]  Habib N. Najm,et al.  Regular Article: A Semi-implicit Numerical Scheme for Reacting Flow , 1999 .

[8]  S AlmgrenAnn,et al.  A Numerical Method for the Incompressible Navier--Stokes Equations Based on an Approximate Projection , 1996 .

[9]  James J. Riley,et al.  Direct numerical simulations of a reacting mixing layer with chemical heat release , 1985 .

[10]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..

[11]  J. Heimerl,et al.  A comparison of transport algorithms for premixed, laminar steady state flames , 1980 .

[12]  Marshall B. Long,et al.  A comparison of the structures of lean and rich axisymmetric laminar Bunsen flames: application of local rectangular refinement solution-adaptive gridding , 1999 .

[13]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Phillip Colella,et al.  A Front Tracking Method for Compressible Flames in One Dimension , 1995, SIAM J. Sci. Comput..

[16]  Vincent Giovangigli,et al.  Convergent iterative methods for multicomponent diffusion , 1991, IMPACT Comput. Sci. Eng..

[17]  Mei-Lin Lai,et al.  A Projection Method for Reacting Flow in the Zero Mach Number Limit , 1994 .

[18]  Joel H. Ferziger,et al.  Simulations of flame-vortex interactions , 1991 .

[19]  Rolf Rannacher,et al.  Numerical simulation of laminar flames at low Mach number by adaptive finite elements , 1999 .

[20]  P. S. Wyckoff,et al.  A Semi-implicit Numerical Scheme for Reacting Flow , 1998 .

[21]  de Lph Philip Goey,et al.  A Numerical Study of a Premixed Flame on a Slit Burner , 1995 .

[22]  B. Bennett,et al.  Local Rectangular Refinement with Application to Nonreacting and Reacting Fluid Flow Problems , 1999 .

[23]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[24]  John B. Bell,et al.  A projection method for combustion in the zero Mach number limit , 1993 .

[25]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[26]  William Y. Crutchfield,et al.  Object-Oriented Implementation of Adaptive Mesh Refinement Algorithms , 1993, Sci. Program..

[27]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..

[28]  de Hc Rick Lange,et al.  MODELING OF CONFINED AND UNCONFINED LAMINAR PREMIXED FLAMES ON SLIT AND TUBE BURNERS , 1995 .

[29]  H. Baum,et al.  The Equations of Motion for Thermally Driven, Buoyant Flows. , 1978, Journal of research of the National Bureau of Standards.

[30]  Pedro J. Coelho,et al.  Calculation of a Confined Axisymmetric Laminar Diffusion Flame Using a Local Grid Refinement Technique , 1993 .

[31]  David E. Keyes,et al.  Solution of two-dimensional axisymmetric laminar diffusion flames by adaptive boundary value methods , 1988 .

[32]  Marshall B. Long,et al.  Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames , 1992 .

[33]  John B. Bell,et al.  Parallelization of structured, hierarchical adaptive mesh refinement algorithms , 2000 .

[34]  Rahima K. Mohammed,et al.  Computational and experimental study of a forced, timevarying, axisymmetric, laminar diffusion flame , 1998 .

[35]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[36]  Jürgen Warnatz,et al.  Influence of Transport Models and Boundary Conditions on Flame Structure , 1982 .

[37]  Phillip Colella,et al.  A conservative front tracking method for hyperbolic conservation laws , 1987 .

[38]  Robert J. Kee,et al.  CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .

[39]  Phillip Colella,et al.  An embedded boundary method for the modeling of unsteady combustion in an industrial gas-fired furnace , 1995 .

[40]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[41]  C. J. Mueller,et al.  Numerical and experimental investigation of vortical flow-flame interaction , 1998 .