Sets In Abelian Groups With Distinct Sums Of Pairs
暂无分享,去创建一个
[1] P. Kaski. A CENSUS OF STEINER TRIPLE SYSTEMS AND SOME RELATED COMBINATORIAL OBJECTS , 2002 .
[2] András Sárközy,et al. Unsolved problems in number theory , 2001, Period. Math. Hung..
[3] Marko Mäkelä,et al. Efficient computer-aided verification of parallel and distributed software systems , 2003 .
[4] T. Janhunen. TRANSLATABILITY AND INTRANSLATABILITY RESULTS FOR CERTAIN CLASSES OF LOGIC PROGRAMS , 2003 .
[5] Emilia Oikarinen. TESTING THE EQUIVALENCE OF DISJUNCTIVE LOGIC PROGRAMS , 2003 .
[6] Robert E. Jamison,et al. The Helly bound for singular sums , 2002, Discret. Math..
[7] Sam Sandqvist,et al. Aspects of modelling and simulation of genetic algorithms : a formal approach , 2002 .
[8] Tommi A. Junttila,et al. On the symmetry reduction method for Petri nets and similar formalisms , 2003 .
[9] R. Read. Every one a winner , 1978 .
[10] Tommi A. Junttila. New Canonical Representative Marking Algorithms for Place/Transition-Nets , 2004, ICATPN.
[11] Harri Haanp. Sets in Zn with distinct sums of pairs , 2003 .
[12] N. J. A. Sloane,et al. On Additive Bases and Harmonious Graphs , 1980, SIAM J. Algebraic Discret. Methods.
[13] Heikki Tauriainen,et al. ON TRANSLATING LINEAR TEMPORAL LOGIC INTO ALTERNATING AND NONDETERMINISTIC AUTOMATA , 2003 .
[14] N. J. A. Sloane,et al. Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.
[15] J. Wallén. ON THE DIFFERENTIAL AND LINEAR PROPERTIES OF ADDITION , 2003 .
[16] A. Brouwer. Bounds on the size of linear codes , 1998 .
[17] Kenjiro Shoda. Über die Automorphismen einer endlichen Abelschen Gruppe , 1928 .
[18] Patric R. J. Östergård,et al. Sets in Z nwith distinct sums of pairs , 2004, Discret. Appl. Math..
[19] R. Read. Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .
[20] N. J. A. Sloane,et al. A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.