Sets In Abelian Groups With Distinct Sums Of Pairs

A subset S = {s1, . . . , sk} of an Abelian group G is called an St -set of size k if all sums of t different elements in S are distinct. Let s(G) denote the cardinality of the largest S2-set in G. Let v(k) denote the order of the smallest Abelian group for which s(G) k. In this article, bounds for s(G) are developed and v(k) is determined for k 15 by computing s(G) for Abelian groups of order up to 183 using exhaustive backtrack search with isomorph rejection. © 2006 Elsevier Inc. All rights reserved.

[1]  P. Kaski A CENSUS OF STEINER TRIPLE SYSTEMS AND SOME RELATED COMBINATORIAL OBJECTS , 2002 .

[2]  András Sárközy,et al.  Unsolved problems in number theory , 2001, Period. Math. Hung..

[3]  Marko Mäkelä,et al.  Efficient computer-aided verification of parallel and distributed software systems , 2003 .

[4]  T. Janhunen TRANSLATABILITY AND INTRANSLATABILITY RESULTS FOR CERTAIN CLASSES OF LOGIC PROGRAMS , 2003 .

[5]  Emilia Oikarinen TESTING THE EQUIVALENCE OF DISJUNCTIVE LOGIC PROGRAMS , 2003 .

[6]  Robert E. Jamison,et al.  The Helly bound for singular sums , 2002, Discret. Math..

[7]  Sam Sandqvist,et al.  Aspects of modelling and simulation of genetic algorithms : a formal approach , 2002 .

[8]  Tommi A. Junttila,et al.  On the symmetry reduction method for Petri nets and similar formalisms , 2003 .

[9]  R. Read Every one a winner , 1978 .

[10]  Tommi A. Junttila New Canonical Representative Marking Algorithms for Place/Transition-Nets , 2004, ICATPN.

[11]  Harri Haanp Sets in Zn with distinct sums of pairs , 2003 .

[12]  N. J. A. Sloane,et al.  On Additive Bases and Harmonious Graphs , 1980, SIAM J. Algebraic Discret. Methods.

[13]  Heikki Tauriainen,et al.  ON TRANSLATING LINEAR TEMPORAL LOGIC INTO ALTERNATING AND NONDETERMINISTIC AUTOMATA , 2003 .

[14]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[15]  J. Wallén ON THE DIFFERENTIAL AND LINEAR PROPERTIES OF ADDITION , 2003 .

[16]  A. Brouwer Bounds on the size of linear codes , 1998 .

[17]  Kenjiro Shoda Über die Automorphismen einer endlichen Abelschen Gruppe , 1928 .

[18]  Patric R. J. Östergård,et al.  Sets in Z nwith distinct sums of pairs , 2004, Discret. Appl. Math..

[19]  R. Read Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .

[20]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.