30-GHz Bandwidth With Directly Current-Modulated 980-nm Oxide-Aperture VCSELs

Directly current-modulated 980-nm vertical-cavity surface-emitting lasers (VCSELs) with oxide-aperture-diameters of <inline-formula> <tex-math notation="LaTeX">$1.5~\mu \text{m}$ </tex-math></inline-formula> exhibit a small-signal −3 dB modulation bandwidth of 31 GHz and a single-mode light-output-power of 3 mW with a side-mode-suppression-ratio (SMSR) of 49 dB at 25 °C at a forward bias current of 3 mA. At 85 °C, the maximum bandwidth is about 25 GHz, the peak power is about 2 mW, and the SMSR remains 49 dB. The bandwidth for a 5.5-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> oxide-aperture-diameter VCSEL reaches 26 and 21 GHz at 25 °C and 85 °C, respectively, with corresponding maximum multi-mode optical output power of about 10 and 6 mW.

[1]  Kent D. Choquette,et al.  Scalability of small-aperture selectively oxidized vertical cavity lasers , 1997 .

[2]  Hui Li,et al.  Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C , 2014 .

[3]  Philip Moser,et al.  Energy-Efficient VCSELs for Optical Interconnects , 2015 .

[4]  Yu-Chia Chang,et al.  Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Michael Liu,et al.  Temperature dependent analysis of 50 Gb/s oxide-confined VCSELs , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[6]  K. Geib,et al.  Fabrication and performance of selectively oxidized vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.

[7]  Kent D. Choquette,et al.  37-GHz Modulation via Resonance Tuning in Single-Mode Coherent Vertical-Cavity Laser Arrays , 2015, IEEE Photonics Technology Letters.

[8]  B. E. Hammons,et al.  Small and large signal modulation of 850 nm oxide-confined verticai-cavity surface-emitting lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[9]  Johan S. Gustavsson,et al.  High-Speed VCSELs With Strong Confinement of Optical Fields and Carriers , 2016, Journal of Lightwave Technology.

[10]  Fumio Koyama,et al.  High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance , 2014 .

[11]  James A. Lott,et al.  Impact of the Oxide-Aperture Diameter on the Energy Efficiency, Bandwidth, and Temperature Stability of 980-nm VCSELs , 2015, Journal of Lightwave Technology.

[12]  Johan S. Gustavsson,et al.  30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s , 2015 .

[13]  James A. Lott,et al.  Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs , 2016, IEEE Photonics Technology Letters.

[14]  Johan S. Gustavsson,et al.  Advances in VCSELs for communication and sensing , 2010 .

[15]  James A. Lott,et al.  Maximizing the temperature insensitivity, energy efficiency, and bit rate of 980-nm VCSELs via small oxide-aperture diameters and photon lifetime tuning , 2015, Photonics West - Optoelectronic Materials and Devices.