Multiple Sclerosis Lesion Filling Using a Non-lesion Attention Based Convolutional Network

[1]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[2]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[3]  Sébastien Ourselin,et al.  A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis , 2016, NeuroImage.

[4]  Stephen M. Smith,et al.  Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis , 2002, NeuroImage.

[5]  Ming-Hsuan Yang,et al.  Generative Face Completion , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Hiroshi Ishikawa,et al.  Globally and locally consistent image completion , 2017, ACM Trans. Graph..

[7]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[8]  David H. Miller,et al.  Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes , 2010, Journal of magnetic resonance imaging : JMRI.

[9]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Kunio Nakamura,et al.  Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients , 2009, NeuroImage.

[11]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Alexander Wong,et al.  A nonlocal-means approach to exemplar-based inpainting , 2008, 2008 15th IEEE International Conference on Image Processing.

[13]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  M. Sdika,et al.  Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping , 2009, Human brain mapping.

[15]  Ludwig Kappos,et al.  White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: a longitudinal study , 2014, BMC Neuroscience.

[16]  Alex Rovira,et al.  Intensity Based Methods for Brain MRI Longitudinal Registration. A Study on Multiple Sclerosis Patients , 2013, Neuroinformatics.

[17]  Minh N. Do,et al.  Semantic Image Inpainting with Perceptual and Contextual Losses , 2016, ArXiv.

[18]  A. Oliver,et al.  A white matter lesion-filling approach to improve brain tissue volume measurements , 2014, NeuroImage: Clinical.

[19]  M. Battaglini,et al.  Evaluating and reducing the impact of white matter lesions on brain volume measurements , 2012, Human brain mapping.

[20]  D. Louis Collins,et al.  Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing , 2015, Front. Neurosci..

[21]  Xavier Lladó,et al.  A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies , 2014, Neuroradiology.

[22]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[23]  Alan C. Evans,et al.  Automatic Quantification of MS Lesions in 3D MRI Brain Data Sets: Validation of INSECT , 1998, MICCAI.

[24]  Minh N. Do,et al.  Semantic Image Inpainting with Deep Generative Models , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Mark Jenkinson,et al.  The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis , 2012, Human brain mapping.

[26]  Hao Li,et al.  High-Resolution Image Inpainting Using Multi-scale Neural Patch Synthesis , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).