Kalman Filtering with Probabilistic Uncertainty in System Parameters

In this letter, we propose a robust Kalman filtering framework for systems with probabilistic uncertainty in system parameters. We consider two cases, namely discrete time systems, and continuous time systems with discrete measurements. The uncertainty, characterized by mean and variance of the states, is propagated using conditional expectations and polynomial chaos expansion framework. The results obtained using the proposed filter are compared with existing robust filters in the literature. The proposed filter demonstrates better performance in terms of estimation error and rate of convergence.

[1]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[2]  Raktim Bhattacharya,et al.  Linear Receding Horizon Control with Probabilistic System Parameters , 2014, ROCOND.

[3]  Mattia Zorzi,et al.  Robust Kalman Filtering Under Model Perturbations , 2015, IEEE Transactions on Automatic Control.

[4]  Ricardo C. L. F. Oliveira,et al.  Robust H2 and H∞ filter design for uncertain linear systems via LMIs and polynomial matrices , 2011, Signal Process..

[5]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[6]  Mehdi Rahmani,et al.  Robust Kalman Filtering for Discrete-Time Time-Varying Systems With Stochastic and Norm-Bounded Uncertainties , 2018 .

[7]  Maurício C. de Oliveira,et al.  Robust Filtering of Discrete-Time Linear Systems with Parameter Dependent Lyapunov Functions , 2002, SIAM J. Control. Optim..

[8]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[9]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[10]  Fuwen Yang,et al.  Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises , 2002, IEEE Trans. Autom. Control..

[11]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..

[12]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[13]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[14]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[15]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[16]  R. Bhattacharya,et al.  Nonlinear estimation with polynomial chaos and higher order moment updates , 2010, Proceedings of the 2010 American Control Conference.

[17]  Lihua Xie,et al.  Robust Kalman filtering for uncertain systems , 1994 .

[18]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Wenqiang Liu,et al.  Robust Kalman estimators for systems with mixed uncertainties , 2018 .

[20]  Mattia Zorzi,et al.  Robust Kalman Filtering: Asymptotic Analysis of the Least Favorable Model , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[21]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[22]  Raktim Bhattacharya,et al.  Linear quadratic regulation of systems with stochastic parameter uncertainties , 2009, Autom..

[23]  Ali H. Sayed,et al.  A framework for state-space estimation with uncertain models , 2001, IEEE Trans. Autom. Control..

[24]  G. Duan,et al.  LMIs in Control Systems: Analysis, Design and Applications , 2013 .

[25]  Lihua Xie,et al.  New approaches to robust minimum variance filter design , 2001, IEEE Trans. Signal Process..

[26]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[27]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[28]  Peng Shi,et al.  Robust Kalman filtering for continuous-time systems with discrete-time measurements , 1999 .

[29]  R. Walters Stochastic Fluid Mechanics via Polynomial Chaos , 2003 .

[30]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[31]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[32]  F. Lewis,et al.  Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition , 2007 .

[33]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[34]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[35]  R. Bhattacharya Robust LQR design for systems with probabilistic uncertainty , 2019, International Journal of Robust and Nonlinear Control.

[36]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[37]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[38]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .