Efficient reliable rational interpolation

It is shown that Thiele fractions and Thiele-Werner fractions always provide representations for the solution of a given soluble, rational interpolation problem. A strategy which guarantees the accuracy of construction of Thiele-Werner interpolants is reviewed. Some difficulties in the selection of best library algorithms for rational interpolation are considered.

[1]  Helmut Werner Ein Algorithmus zur Rationalen Interpolation , 1980 .

[2]  William B. Jones,et al.  Rational approximations corresponding to Newton series (Newton-Padé approximants) , 1976 .

[3]  L. Wuytack,et al.  Padé Approximation and its Applications , 1979 .

[4]  H. Padé Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .

[5]  Herbert Arndt Ein verallgemeinerter Kettenbruch-Algorithmus zur rationalen Hermite-Interpolation , 1980 .

[6]  J. H. Wilkinson,et al.  Practical Problems Arising in the Solution of Polynomial Equations , 1971 .

[7]  P. R. Graves-Morris,et al.  Reliable rational interpolation , 1980 .

[8]  C. Witzgall,et al.  Tschebyscheff-Approximationen in kleinen Intervallen II , 1960 .

[9]  Josef Stoer Über zwei Algorithmen zur Interpolation mit rationalen Funktionen , 1961 .

[10]  Helmut Werner,et al.  Rationale tschebyscheff-approximation, eigenwerttheorie und differenzenrechnung , 1963 .

[11]  Keith O. Geddes Symbolic Computation of Padé Approximants , 1979, TOMS.

[12]  Luc Wuytack On Some Aspects of the Rational Interpolation Problem , 1974 .

[13]  O. GeddesK. Symbolic Computation of Pad Approximants , 1979 .

[14]  G. A. Baker Essentials of Padé approximants , 1975 .

[15]  Adhemar Bultheel,et al.  Recursive algorithms for the Padé table : Two approaches , 1979 .

[16]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[17]  P. R. Graves-Morris,et al.  Practical, Reliable, Rational Interpolation , 1980 .

[18]  Helmut Werner,et al.  Praktische Mathematik , 1918 .

[19]  Helmut Werner,et al.  A reliable method for rational interpolation , 1979 .

[20]  C. Witzgall,et al.  Tschebyscheff-Approximationen in kleinen Intervallen I , 1960 .