CLUSTERING OF DOCUMENT COLLECTIONS BASED ON THE ADAPTIVE SELF-ORGANIZING NEURAL NETWORK

Предложена адаптивная нечеткая самоорганизующаяся нейронная сеть, настраиваемая с помощью рекуррентного алгоритма самообучения, являющегося обобщением правила обучения Кохонена, и позволяющая находить в реальном времени не только прототипы (центроиды) формируемых кластеров, но и оценивать уровни принадлежности каждого вновь поступившего образа к конкретному кластеру, что позволяет использовать данную архитектуру для кластеризации текстовых документов в условиях взаимно перекрывающихся классов.