Design and analysis of hybrid metaheuristics for the Reliability p-Median Problem

In the p-Median Problem, it is assumed that, once the facilities are opened, they may not fail. In practice some of the facilities may become unavailable due to several factors. In the Reliability p-Median Problem some of the facilities may not be operative during certain periods. The objective now is to find facility locations that are both inexpensive and also reliable. We present different configurations of two hybrid metaheuristics to solve the problem, a genetic algorithm and a scatter search approach. We have carried out an extensive computational experiment to study the performance of the algorithms and compare its efficiency solving well-known benchmark instances.

[1]  Rubén Ruiz,et al.  Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics , 2005, Eur. J. Oper. Res..

[2]  J. Reese,et al.  Solution methods for the p-median problem: An annotated bibliography , 2006 .

[3]  Polly Bart,et al.  Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..

[4]  Martine Labbé,et al.  Solving Large p-Median Problems with a Radius Formulation , 2011, INFORMS J. Comput..

[5]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[6]  Laurence A. Wolsey,et al.  A Canonical Representation of Simple Plant Location Problems and Its Applications , 1980, SIAM J. Matrix Anal. Appl..

[7]  Sourour Elloumi,et al.  A tighter formulation of the p-median problem , 2010, J. Comb. Optim..

[8]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[9]  Lawrence V. Snyder,et al.  Reliability Models for Facility Location: The Expected Failure Cost Case , 2005, Transp. Sci..

[10]  M. Carmen Garrido,et al.  Soft-computing based heuristics for location on networks: The p-median problem , 2011, Appl. Soft Comput..

[11]  S. F. Ghannadpour,et al.  An efficient heuristic method for capacitated P-Median problem , 2009 .

[12]  Rubén Ruiz,et al.  Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with genetic algorithms , 2003, J. Oper. Res. Soc..

[13]  R. A. Whitaker,et al.  A Fast Algorithm For The Greedy Interchange For Large-Scale Clustering And Median Location Problems , 1983 .

[14]  Fred Glover,et al.  Genetic algorithms and scatter search: unsuspected potentials , 1994 .

[15]  Éric D. Taillard,et al.  Heuristic Methods for Large Centroid Clustering Problems , 2003, J. Heuristics.

[16]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[17]  Charles ReVelle,et al.  Central Facilities Location , 2010 .

[18]  Y. Kochetov,et al.  LARGE NEIGHBORHOOD SEARCH FOR THE P-MEDIAN PROBLEM , 2003 .

[19]  Boris Goldengorin,et al.  Complexity evaluation of benchmark instances for the p-median problem , 2011, Math. Comput. Model..

[20]  Paul J. Densham,et al.  A more efficient heuristic for solving largep-median problems , 1992 .

[21]  Y. Kochetov,et al.  LARGE NEIGHBORHOOD LOCAL SEARCH FOR THE P-MEDIAN PROBLEM , 2005 .

[22]  M. Goodchild,et al.  Discrete space location-allocation solutions from genetic algorithms , 1986 .

[23]  Belén Melián-Batista,et al.  Parallelization of the scatter search for the p-median problem , 2003, Parallel Comput..

[24]  Belén Melián-Batista,et al.  The Parallel Variable Neighborhood Search for the p-Median Problem , 2002, J. Heuristics.

[25]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[26]  T. V. Levanova,et al.  Algorithms of Ant System and Simulated Annealing for the p-median Problem , 2004 .

[27]  Juan A. Díaz,et al.  Hybrid scatter search and path relinking for the capacitated p , 2006, Eur. J. Oper. Res..

[28]  José Andrés Moreno Pérez,et al.  A Chain-interchange Tabu Search Method (Tabu search in solving p -facility location-allocation problems) , 1995 .

[29]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[30]  Sohail S. Chaudhry,et al.  Solving a class of facility location problems using genetic algorithms , 2003, Expert Syst. J. Knowl. Eng..

[31]  Alex Alves Freitas,et al.  A hybrid data mining metaheuristic for the p‐median problem , 2011, Stat. Anal. Data Min..

[32]  José Muñoz,et al.  A neural model for the p-median problem , 2008, Comput. Oper. Res..

[33]  Pierre Hansen,et al.  The p-median problem: A survey of metaheuristic approaches , 2005, Eur. J. Oper. Res..

[34]  P. Hansen,et al.  Variable neighborhood search for the p-median , 1997 .

[35]  J. Beasley A note on solving large p-median problems , 1985 .

[36]  J. M. Moreno-Vega,et al.  THE CHAIN-INTERCHANGE HEURISTIC METHOD1 , 1996 .

[37]  Jafar Fathali,et al.  A genetic algorithm for the p-median problem with pos/neg weights , 2006, Appl. Math. Comput..

[38]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[39]  Krzysztof Fleszar,et al.  An effective VNS for the capacitated p-median problem , 2008, Eur. J. Oper. Res..

[40]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[41]  Zvi Drezner,et al.  An Efficient Genetic Algorithm for the p-Median Problem , 2003, Ann. Oper. Res..

[42]  Alex Alves Freitas,et al.  A Genetic Algorithm for Solving a Capacitated p-Median Problem , 2004, Numerical Algorithms.