Conservation of mass and momentum of the least-squares spectral collocation scheme for the Stokes problem

From the literature it is known that spectral least-squares schemes perform poorly with respect to mass conservation and compensate this lack by a superior conservation of momentum. This should be revised, since the here presented new least-squares spectral collocation scheme leads to an outstanding performance with respect to conservation of momentum and mass. The reasons can be found in using only a few elements, each with high polynomial degree, avoiding normal equations for solving the overdetermined linear systems of equations and by introducing the Clenshaw-Curtis quadrature rule for imposing the average pressure to be zero. Furthermore, we combined the transformation of Gordon and Hall (transfinite mapping) with our least-squares spectral collocation scheme to discretize the internal flow problems.

[1]  John J. Nelson,et al.  Least-Squares Finite Element Method for the Stokes Problem with Zero Residual of Mass Conservation , 1997 .

[2]  Max D. Gunzburger,et al.  Issues Related to Least-Squares Finite Element Methods for the Stokes Equations , 1998, SIAM J. Sci. Comput..

[3]  Michael M. J. Proot,et al.  Mass- and Momentum Conservation of the Least-Squares Spectral Element Method for the Stokes Problem , 2006, J. Sci. Comput..

[4]  B. Jiang On the least-squares method , 1998 .

[5]  B. Jiang A least‐squares finite element method for incompressible Navier‐Stokes problems , 1992 .

[6]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[7]  Marc Gerritsma,et al.  hp-Adaptive least squares spectral element method for hyperbolic partial differential equations , 2008 .

[8]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[9]  A. Patera,et al.  Spectral element methods for the incompressible Navier-Stokes equations , 1989 .

[10]  Michael M. J. Proot,et al.  Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier-Stokes equations , 2005, Numerical Algorithms.

[11]  J. P. Pontaza,et al.  Least-squares finite element formulations for viscous incompressible and compressible fluid flows , 2006 .

[12]  J. P. Pontaza,et al.  Space-time coupled spectral/ hp least-squares finite element formulation for the incompressible Navier-Stokes equations , 2004 .

[13]  Claudio Canuto,et al.  Generalized INF-SUP condition for Chebyshev approximation of the Navier-Stokes equations , 1986 .

[14]  Marc I. Gerritsma,et al.  Direct Minimization of the least-squares spectral element functional - Part I: Direct solver , 2008, J. Comput. Phys..

[15]  M. M. J. Proot,et al.  Least-squares spectral elements applied to the Stokes problem , 2002 .

[16]  Wilhelm Heinrichs,et al.  Least-squares spectral collocation with the overlapping Schwarz method for the incompressible Navier–Stokes equations , 2006, Numerical Algorithms.

[17]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[18]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[19]  Wilhelm Heinrichs Least-Squares Spectral Collocation for the Navier–Stokes Equations , 2004, J. Sci. Comput..

[20]  Carlos Alberto Dorao,et al.  A least-squares method with direct minimization for the solution of the breakage-coalescence population balance equation , 2008, Math. Comput. Simul..

[21]  W. Heinrichs An adaptive least-squares spectral collocation method with triangular elements for the incompressible Navier–Stokes equations , 2007 .

[22]  Wilhelm Heinrichs,et al.  Spectral collocation schemes on the unit disc , 2004 .

[23]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[24]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[25]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[26]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[27]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[28]  M.M.J. Proot The least-squares spectral element method: Theory, implementation and application to incompressible flows , 2003 .

[29]  B. Jiang,et al.  Least-squares finite element method for fluid dynamics , 1990 .

[30]  Michael M. J. Proot,et al.  A Least-Squares Spectral Element Formulation for the Stokes Problem , 2002, J. Sci. Comput..

[31]  Wilhelm Heinrichs Least-squares spectral collocation for discontinuous and singular perturbation problems , 2003 .

[32]  B. Jiang,et al.  Least-square finite elements for Stokes problem , 1990 .

[33]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[34]  J. J. Nelson,et al.  A mass conservative least-squares finite element method for the stokes problem , 1995 .

[35]  Wilhelm Heinrichs,et al.  A direct solver for the least-squares spectral collocation system on rectangular elements for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..

[36]  J. N. Reddy,et al.  Spectral/ hp least-squares finite element formulation for the Navier-Stokes equations , 2003 .