A plume-triggered delamination origin for the Columbia River Basalt Group

The Columbia River Basalt Group reveals a complete and detailed stratigraphic succession to assess the interplay of lithospheric and asthenospheric processes. This record of chemical change through time is used to evaluate genetic models for Columbia River Basalt volcanism. We recognize four primary constraints on source melting: (1) a plume component appears to be the dominant source of Imnaha Basalt; (2) Grande Ronde Basalt is best interpreted as being derived from a mafic pyroxenite or eclogite source; (3) the sequence of source melting must correspond with the stratigraphic record; and (4) working models must explain a step-function chemical change at the Imnaha–Grande Ronde stratigraphic boundary. We can envision only three potential models to satisfy these primary constraints: (1) melting of a mantle plume entrained with eclogite, (2) plume interaction with the Juan de Fuca plate, and (3) delamination triggered by plume emplacement. The first two of these are inconsistent with the time-stratigraphic sequence of melting and cannot satisfy all four primary constraints. In contrast, a model of plume-triggered delamination accurately predicts a progressive sequence of melting that satisfies each of the primary constraints. Such a model is consistent with recent numerical experiments demonstrating that delamination is the expected result of plume emplacement beneath thin Mesozoic lithosphere lying adjacent to a thick cratonic boundary. We test this model by comparing the observed history of uplift and tectonism in eastern Oregon and adjacent Washington to that predicted by the numerical models to reveal consistent stress regimes and strikingly similar topographic and structural profiles.

[1]  M. Ross Stratigraphic relationships of subaerial, invasive, and intracanyon flows of Saddle Mountains Basalt in the Troy basin, Oregon and Washington , 1989 .

[2]  J. Roering,et al.  A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon , 2005, Nature.

[3]  P. Kelemen,et al.  Trench-Parallel Anisotropy Produced by Foundering of Arc Lower Crust , 2007, Science.

[4]  S. Gibson,et al.  Subcontinental mantle plumes, hotspots and pre-existing thinspots , 1991, Journal of the Geological Society.

[5]  B. Hanan,et al.  Yellowstone plume–continental lithosphere interaction beneath the Snake River Plain , 2008 .

[6]  J. Saleeby,et al.  A Case for Delamination of the Deep Batholithic Crust beneath the Sierra Nevada, California , 1998 .

[7]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[8]  W. J. Morgan,et al.  Plate Motions and Deep Mantle Convection , 1972 .

[9]  B. Boville,et al.  The effects of interactive ozone chemistry on simulations of the middle atmosphere , 2005 .

[10]  P. Hooper Chemical discrimination of Columbia River basalt flows , 2000 .

[11]  G. Davies,et al.  Genesis of flood basalts from eclogite‐bearing mantle plumes , 1997 .

[12]  W. Griffin,et al.  The density structure of subcontinental lithosphere through time , 2001 .

[13]  L. Elkins‐Tanton Continental magmatism caused by lithospheric delamination , 2005 .

[14]  R. Lambert,et al.  Lead isotopes and the sources of the Columbia River Basalt Group , 1994 .

[15]  R. Fleck,et al.  Evolution of the Salmon River suture and continental delamination in the Syringa embayment , 2005 .

[16]  Eiichi Takahahshi,et al.  Origin of the Columbia River basalts: melting model of a heterogeneous plume head , 1998 .

[17]  A. Glazner,et al.  Contamination of basaltic magma by mafic crust at Amboy and Pisgah Craters, Mojave Desert, California , 1991 .

[18]  T. Ahrens,et al.  The Equation of State of a Molten Komatiite 2. Application to Komatiite Petrogenesis and the Hadean Mantle , 1991 .

[19]  S. Taylor,et al.  The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  R. Allen,et al.  VP and VS structure of the Yellowstone hot spot from teleseismic tomography: Evidence for an upper mantle plume , 2006 .

[21]  W. E. Galloway,et al.  Reply to the comments of W. Helland-Hansen on "Towards the standardization of sequence stratigraphy" by Catuneanu et al. (Earth-Sciences Review 92(2009)1-33) , 2009 .

[22]  D. DePaolo Comment on “Columbia River volcanism: the question of mantle heterogeneity or crustal contamination” by R. W. Carlson, G. W. Lugmair and J. D. Macdougall , 1983 .

[23]  M. Lustrino How the delamination and detachment of lower crust can influence basaltic magmatism , 2005 .

[24]  G. Davies,et al.  Mantle plumes and flood basalts: Enhanced melting from plume ascent and an eclogite component , 2001 .

[25]  P. Hooper,et al.  The Eckler Mountain basalts and associated flows, Columbia River Basalt Group , 1995 .

[26]  M. Dungan,et al.  Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes , 2004 .

[27]  I. Campbell Large Igneous Provinces and the Mantle Plume Hypothesis , 2005 .

[28]  G. Caprarelli,et al.  A clinopyroxene–basalt geothermobarometry perspective of Columbia Plateau (NW‐USA) Miocene magmatism , 2005 .

[29]  Mark A. Richards,et al.  Origin of the Columbia Plateau and Snake River plain: Deflection of the Yellowstone plume , 1993 .

[30]  J. Colgan,et al.  Diachroneity of Basin and Range extension and Yellowstone hotspot volcanism in northwestern Nevada , 2004 .

[31]  P. Hooper,et al.  Evaluating crustal contamination in continental basalts: the isotopic composition of the Picture Gorge Basalt of the Columbia River Basalt Group , 1993 .

[32]  Donald A. Swanson,et al.  Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group , 1989 .

[33]  T. Atwater Plate tectonic history of the northeast Pacific and western North America , 1989 .

[34]  P. Kelemen,et al.  Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs , 2006 .

[35]  L. Elkins‐Tanton Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities , 2007 .

[36]  W. Hart,et al.  Distribution and geochronology of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalt revisited , 2007 .

[37]  P. Kelemen,et al.  One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust , 2005 .

[38]  A. Brandon,et al.  Assessing subcontinental lithospheric mantle sources for basalts: Neogene volcanism in the Pacific Northwest, USA as a test case , 1995 .

[39]  S. Church Genetic interpretation of lead-isotopic data from the Columbia River Basalt Group, Oregon, Washington, and Idaho , 1985 .

[40]  Shu-Chuan Lin,et al.  Deformation, stirring and material transport in thermochemical plumes , 2006 .

[41]  V. Camp Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region , 1995 .

[42]  R. Carlson,et al.  Columbia River volcanism - The question of mantle heterogeneity or crustal contamination , 1981 .

[43]  T. J. Owens,et al.  Active foundering of a continental arc root beneath the southern Sierra Nevada in California , 2004, Nature.

[44]  G. Priest,et al.  Volcanic and tectonic evolution of the Cascade Volcanic Arc, central Oregon , 1990 .

[45]  D. Draper Late cenozoic bimodal magmatism in the northern Basin and Range Province of southeastern Oregon , 1991 .

[46]  Allyson C. Mathis Geology and petrology of a 26-Ma trachybasalt to peralkaline rhyolite suite exposed at Hart Mountain, southern Oregon , 1993 .

[47]  C. Hawkesworth,et al.  Isotopic and Geochemical Constraints on the Origin and Evolution of the Columbia River Basalt , 1993 .

[48]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[49]  A. Yasuda,et al.  Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa , 1994 .

[50]  G. Nolet,et al.  Upper mantle beneath Southeast Asia from S velocity tomography , 2003 .

[51]  R. Saltus,et al.  Why is it downhill from Tonopah to Las Vegas?: A case for mantle plume support of the high northern Basin and Range , 1995 .

[52]  S. Hart,et al.  Silica enrichment in the continental upper mantle via melt/rock reaction , 1998 .

[53]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[54]  R. Cliff,et al.  The evolution of excess argon in alpine biotites — A40Ar-39Ar analysis , 1980 .

[55]  L. Guillou-Frottier,et al.  Plume head–lithosphere interactions near intra-continental plate boundaries , 2007 .

[56]  Richard W. Carlson,et al.  Isotopic constraints on Columbia River flood basalt genesis and the nature of the subcontinental mantle , 1984 .

[57]  B. Hanan,et al.  The Stonyford Volcanic Complex: a Forearc Seamount in the Northern California Coast Ranges , 2005 .

[58]  Paul D. Asimow,et al.  Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites , 2007 .

[59]  P. Hooper,et al.  Geologic studies of the Columbia Plateau: Part I. Late Cenozoic evolution of the southeast part of the Columbia River Basalt Province , 1981 .

[60]  C. Herzberg Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano , 2006, Nature.

[61]  Jonathan M. G. Glen,et al.  Large-scale fractures related to inception of the Yellowstone hotspot , 2002 .

[62]  C. Herzberg,et al.  Plume-Associated Ultramafic Magmas of Phanerozoic Age , 2002 .

[63]  Victor E. Camp,et al.  Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon , 2003 .

[64]  C. Hawkesworth,et al.  Major- and trace-element analyses of Steens Basalt, southeastern Oregon , 1998 .

[65]  F. Ramos,et al.  Sr isotope disequilibrium in Columbia River flood basalts: Evidence for rapid shallow-level open-system processes , 2005 .

[66]  C. R. Knowles,et al.  Imnaha Basalt, Columbia River Basalt Group , 1984 .

[67]  Gordon G. Goles,et al.  A Miocene subcontinental plume in the Pacific Northwest: geochemical evidence , 1988 .

[68]  P. Hooper,et al.  Ages of the Steens and Columbia River flood basalts and their relationship to extension-related calc-alkalic volcanism in eastern Oregon , 2002 .

[69]  S. Klemperer,et al.  Crustal structure of the northwestern Basin and Range Province and its transition to unextended volcanic plateaus , 2007 .

[70]  Gillian R. Foulger,et al.  Upper-mantle origin of the Yellowstone hotspot , 2002 .

[71]  S. Reidel Stratigraphy and petrogenesis of the Grande Ronde Basalt from the deep canyon country of Washington, Oregon, and Idaho , 1983 .

[72]  Robert A. Duncan,et al.  A captured island chain in the coast range of Oregon and Washington , 1982 .

[73]  S. R. Durand,et al.  Preeruption history of the Grande Ronde Formation lavas, Columbia River Basalt Group, American Northwest: Evidence from phenocrysts , 2004 .

[74]  G. Foulger The “plate” model for the genesis of melting anomalies , 2007 .

[75]  A. Smith Back-arc convection model for Columbia river basalt genesis , 1992 .

[76]  A. Glazner Thermal limitations on incorporation of wall rock into magma , 2007 .

[77]  R. Duncan,et al.  Geochronology of age-progressive volcanism of the Oregon High Lava Plains : implications for the plume interpretation of Yellowstone , 2004 .

[78]  G. Ranalli,et al.  Subduction of continental lithosphere, changes in negative buoyancy, and slab-plume interaction: consequences for slab breakoff , 2004 .

[79]  Donald J. DePaolo,et al.  HELIUM AND NEON ISOTOPES IN THE IMNAHA BASALT, COLUMBIA RIVER BASALT GROUP: EVIDENCE FOR A YELLOWSTONE PLUME SOURCE , 1997 .

[80]  R. Blakely,et al.  Fore-arc migration in Cascadia and its neotectonic significance , 1998 .

[81]  M. Cummings,et al.  Stratigraphic and structural evolution of the middle Miocene synvolcanic Oregon-Idaho graben , 2000 .

[82]  Kenneth G. Dueker,et al.  Teleseismic P‐wave tomogram of the Yellowstone plume , 2005 .

[83]  Victor E. Camp,et al.  Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest , 2004 .

[84]  P. Hooper,et al.  Tertiary calc-alkaline magmatism associated with lithospheric extension in the Pacific Northwest , 1995 .

[85]  F. Ramos,et al.  Columbia River flood basalts from a centralized crustal magmatic system , 2008 .

[86]  Vera W. Langer Geology and petrologic evolution of the silicic to intermediate volcanic rocks underneath Steens Mountain basalt, SE Oregon , 1991 .

[87]  G. W. Walker Geologic map of Oregon east of the 121st meridian , 1977 .

[88]  D. L. Anderson Large Igneous Provinces, Delamination, and Fertile Mantle , 2005 .

[89]  Cin-Ty A. Lee,et al.  The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California , 2006 .

[90]  T. Ahrens,et al.  The equation of state of a molten komatiite: 1 Shock wave compression to 36 GPa , 1991 .

[91]  J. Saleeby,et al.  Buoyancy sources for a large unrooted mountain range , 1996 .

[92]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[93]  Henri Samuel,et al.  Lagrangian structures and stirring in the Earth’s mantle , 2003 .

[94]  D. L. Anderson,et al.  Edge-driven convection , 1998 .

[95]  N. Sleep,et al.  Mantle plume influence on the Neogene uplift and extension of the U.S. western Cordillera , 1994 .

[96]  G. Yaxley Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts , 2000 .

[97]  W. Hart,et al.  Areal distribution and age of low-K, high-alumina olivine tholeiite magmatism in the northwestern Great Basin , 1984 .

[98]  B. Hanan,et al.  Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge , 2004, Nature.

[99]  Donald A. Swanson,et al.  Revisions in Stratigraphic Nomenclature of the Columbia River Basalt Group , 1979 .

[100]  R. Shinjo,et al.  Origin of mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? , 2002 .

[101]  J. Oldow,et al.  Late Cretaceous truncation of the western Idaho shear zone in the central North American Cordillera , 2007 .

[102]  Kenneth L. Pierce,et al.  The track of the Yellowstone hot spot--volcanism, faulting and uplift , 1990 .

[103]  R. Saltus,et al.  Yellowstone plume head; postulated tectonic relations to the Vancouver Slab, continental boundaries, and climate , 2000 .

[104]  R. Fleck,et al.  Location, Age, and Tectonic Significance of the Western Idaho Suture Zone (WISZ) , 2004 .

[105]  B. Hanan,et al.  Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes , 1996, Science.

[106]  C. Goldfinger,et al.  Rotation and plate locking at the Southern Cascadia Subduction Zone , 2000 .

[107]  R. Carlson,et al.  Tectonic controls on magma genesis and evolution in the northwestern United States , 1987 .

[108]  J. Winne,et al.  Continental rift systems and anorogenic magmatism , 2005 .

[109]  Peter R. Hooper,et al.  The origin of the Columbia River flood basalt province: Plume versus nonplume models , 2007 .

[110]  P. Kelemen,et al.  On the conditions for lower crustal convective instability , 2001 .

[111]  A. Sobolev,et al.  The Amount of Recycled Crust in Sources of Mantle-Derived Melts , 2007, Science.

[112]  D. L. Anderson The eclogite engine: Chemical geodynamics as a Galileo thermometer , 2007 .

[113]  L. Guillou-Frottier,et al.  The plume head–continental lithosphere interaction using a tectonically realistic formulation for the lithosphere , 2005 .

[114]  Harmen Bijwaard,et al.  Closing the gap between regional and global travel time tomography , 1998 .

[115]  J. Bryce,et al.  Pb isotopic heterogeneity in basaltic phenocrysts , 2004 .

[116]  E. Humphreys,et al.  Tomographic image of the Juan de Fuca Plate beneath Washington and western Oregon using teleseismic , 1988 .

[117]  Richard W. Carlson,et al.  Crustal genesis on the Oregon Plateau , 1987 .

[118]  J. Chesley,et al.  Crust–mantle interaction in large igneous provinces: Implications from the Re–Os isotope systematics of the Columbia River flood basalts , 1998 .

[119]  Chesley,et al.  Osmium isotopic evidence for mesozoic removal of lithospheric mantle beneath the sierra nevada, california , 2000, Science.

[120]  H. Samuel,et al.  Beyond the thermal plume paradigm , 2005 .

[121]  G. Caprarelli,et al.  Physical evolution of Grande Ronde Basalt magmas, Columbia River Basalt Group, north-western USA , 2004 .

[122]  J. Saleeby,et al.  Production and loss of high‐density batholithic root, southern Sierra Nevada, California , 2003 .