MicroRNA 483‐3p suppresses the expression of DPC4/Smad4 in pancreatic cancer

[1]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[2]  K. Lyons,et al.  A phylogenetically conserved cis-regulatory module in the Msx2 promoter is sufficient for BMP-dependent transcription in murine and Drosophila embryos , 2004, Development.

[3]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[4]  V. Ambros MicroRNA Pathways in Flies and Worms Growth, Death, Fat, Stress, and Timing , 2003, Cell.

[5]  Denis Vivien,et al.  Direct binding of Smad3 and Smad4 to critical TGFβ‐inducible elements in the promoter of human plasminogen activator inhibitor‐type 1 gene , 1998, The EMBO journal.

[6]  A. Moustakas,et al.  Role of Smad Proteins and Transcription Factor Sp1 in p21Waf1/Cip1 Regulation by Transforming Growth Factor-β* , 2000, The Journal of Biological Chemistry.

[7]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[8]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[9]  S. Batra,et al.  MicroRNA in pancreatic cancer: pathological, diagnostic and therapeutic implications. , 2010, Cancer letters.

[10]  J. Massagué,et al.  Mechanisms of TGF-beta signaling from cell membrane to the nucleus. , 2003, Cell.

[11]  Xiaozhong Guo,et al.  Current diagnosis and treatment of pancreatic cancer in China. , 2005, Pancreas.

[12]  A. Nicholson,et al.  CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma—A miRNA microarray analysis , 2009, Genes, chromosomes & cancer.

[13]  K. Kinzler,et al.  Cancer genes and the pathways they control , 2004, Nature Medicine.

[14]  Israel Steinfeld,et al.  Novel Rank-Based Statistical Methods Reveal MicroRNAs with Differential Expression in Multiple Cancer Types , 2009, PloS one.

[15]  Tsung-Cheng Chang,et al.  microRNAs in vertebrate physiology and human disease. , 2007, Annual review of genomics and human genetics.

[16]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.

[17]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[18]  O. Kent,et al.  A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells , 2009, Cancer biology & therapy.

[19]  N. Enomoto,et al.  Smad4 is essential for down-regulation of E-cadherin induced by TGF-beta in pancreatic cancer cell line PANC-1. , 2006, Journal of biochemistry.

[20]  R. Hruban,et al.  Molecular genetics of pancreatic intraepithelial neoplasia. , 2007, Journal of hepato-biliary-pancreatic surgery.

[21]  W. Liang,et al.  Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. , 2009, Carcinogenesis.

[22]  H. Kocher,et al.  Pancreatic Cancer , 2019, Methods in Molecular Biology.

[23]  Gerald C. Chu,et al.  Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. , 2006, Genes & development.

[24]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[25]  J. Massagué,et al.  Smad transcription factors. , 2005, Genes & development.

[26]  Jia Yu,et al.  miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. , 2010, Cancer research.

[27]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[28]  S. T. Mees,et al.  MicroRNAs: Novel Diagnostic and Therapeutic Tools for Pancreatic Ductal Adenocarcinoma? , 2009, Annals of Surgical Oncology.

[29]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[30]  M. Schäfer,et al.  [Current diagnosis and treatment of pancreatic cancer]. , 2005, Praxis.

[31]  R. Hruban,et al.  Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. , 2000, Cancer research.

[32]  Ryan M. O’Connell,et al.  MicroRNAs: new regulators of immune cell development and function , 2008, Nature Immunology.

[33]  W. Wang,et al.  Cooperative Binding of Smad Proteins to Two Adjacent DNA Elements in the Plasminogen Activator Inhibitor-1 Promoter Mediates Transforming Growth Factor β-induced Smad-dependent Transcriptional Activation* , 1999, The Journal of Biological Chemistry.

[34]  C. Croce,et al.  Oncogenic role of miR-483-3p at the IGF2/483 locus. , 2010, Cancer research.

[35]  G. Parmigiani,et al.  Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses , 2008, Science.

[36]  Douglas B. Evans,et al.  Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[37]  Christian Sirard,et al.  Smad4 and β-Catenin Co-activators Functionally Interact with Lymphoid-enhancing Factor to Regulate Graded Expression of Msx2* , 2003, Journal of Biological Chemistry.

[38]  A. Sparks,et al.  Immunohistochemical labeling for Dpc4 mirrors genetic status in pancreatic adenocarcinomas: A new marker of DPC4 inactivation , 2000 .

[39]  A. Jemal,et al.  Cancer Statistics, 2009 , 2009, CA: a cancer journal for clinicians.

[40]  C. Hill,et al.  Tgf-beta superfamily signaling in embryonic development and homeostasis. , 2009, Developmental cell.