On Functors Expressible in the Polymorphic Typed Lambda Calculus

Abstract Given a model of the polymorphic typed lambda calculus based upon a Cartesian closed category K , there will be functors from K to K whose action on objects can be expressed by type expressions and whose action on morphisms can be expressed by ordinary expressions. We show that if T is such a functor then there is a weak initial T-algebra and if, in addition, K possesses equalizers of all subsets of its morphism sets, then there is an initial T-algebra. These results are used to establish the impossibility of certain models, including those in which types denote sets and S → S′ denotes the set of all functions from S to S′.

[1]  N. S. Barnett,et al.  Private communication , 1969 .

[2]  M. Barr Coequalizers and free triples , 1970 .

[3]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[4]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[5]  S. Lane Categories for the Working Mathematician , 1971 .

[6]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[7]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[8]  G. Takeuti Proof Theory , 1975 .

[9]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[10]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[11]  John C. Reynolds Semantics of the Domain of Flow Diagrams , 1977, JACM.

[12]  Nancy Jean Mccracken,et al.  An investigation of a programming language with a polymorphic type structure. , 1979 .

[13]  Nancy J. McCracken A finitary retract model for the polymorphic lambda-calculus , 1982 .

[14]  Daniel Leivant Reasoning about functional programs and complexity classes associated with type disciplines , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[15]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[16]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[17]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[18]  Corrado Böhm,et al.  Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..

[19]  John C. Mitchell A type-inference approach to reduction properties and semantics of polymorphic expressions (summary) , 1986, LFP '86.

[20]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[21]  Kim B. Bruce,et al.  The Finitary Projection Model for Second Order Lambda Calculus and Solutions to Higher Order Domain Equations , 1986, LICS.

[22]  R. A. G. Seely,et al.  Categorical semantics for higher order polymorphic lambda calculus , 1987, Journal of Symbolic Logic.

[23]  Carl A. Gunter Universal Profinite Domains , 1987, Inf. Comput..

[24]  Andre Scedrov,et al.  Some Semantic Aspects of Polymorphic Lambda Calculus , 1987, LICS.

[25]  Andrew M. Pitts,et al.  Polymorphism is Set Theoretic, Constructively , 1987, Category Theory and Computer Science.

[26]  Martin Hyland A small complete category , 1988, Ann. Pure Appl. Log..

[27]  Thierry Coquand,et al.  Categories of embeddings , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[28]  Carl A. Gunter,et al.  Coherence and Consistency in Domains (Extended Outline) , 1988, LICS.

[29]  Pierre America,et al.  Denotational Semantics of a Parallel Object-Oriented Language , 1989, Inf. Comput..

[30]  A. Pitt,et al.  Non trivial power types can't be subtypes of polymorphic types , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[31]  A. Jung,et al.  Cartesian closed categories of domains , 1989 .

[32]  Glynn Winskel,et al.  Domain Theoretic Models of Polymorphism , 1989, Inf. Comput..

[33]  Eugenio Moggi,et al.  Constructive Natural Deduction and its 'Omega-Set' Interpretation , 1991, Math. Struct. Comput. Sci..