Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities

We present a scheme for teleporting a generic two-photon polarization state by using two EPR states as quantum channel based on weak cross-Kerr nonlinearities. As the core component of the present framework, the quantum nondemolition detector based on the weak cross-Kerr nonlinearity acts as an EPR entangler as well as the Bell-state analyzer. This makes the teleportation protocol be achieved near deterministically and be feasible in the current experimental technology.

[1]  L. Ye,et al.  Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity , 2011 .

[2]  An economic and feasible scheme to generate the four-photon entangled state via weak cross-Kerr nonlinearity , 2013 .

[3]  Fengli Yan,et al.  Teleporting a quantum state from a subset of the whole Hilbert space , 2005, quant-ph/0509217.

[4]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[5]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[6]  M. Orrit,et al.  Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence , 1999 .

[7]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[8]  Zhan-jun Zhang Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message , 2006 .

[9]  Bing He,et al.  Weaving independently generated photons into an arbitrary graph state , 2011 .

[10]  G. J. Milburn,et al.  Quantum-information processing via a lossy bus , 2006, quant-ph/0607206.

[11]  Gustavo Rigolin,et al.  Unity fidelity multiple teleportation using partially entangled states , 2008, 0807.3549.

[12]  Shou Zhang,et al.  Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity , 2012 .

[13]  Xin-Wen Wang,et al.  Nondestructive two-photon parity detector with near unity efficiency , 2013 .

[14]  Vitali,et al.  Complete quantum teleportation with a kerr nonlinearity , 2000, Physical review letters.

[15]  T. Gao,et al.  Optimal controlled teleportation , 2007, 0710.1055.

[16]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[17]  Liu Ye,et al.  CONCENTRATING ARBITRARY FOUR-PHOTON LESS-ENTANGLED CLUSTER STATE BY SINGLE PHOTONS , 2012 .

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Shi-Qing Tang,et al.  Photonic two-qubit parity gate with tiny cross–Kerr nonlinearity , 2011, 1112.6135.

[20]  Ting Gao,et al.  Entangler and analyzer for multiphoton Greenberger-Horne-Zeilinger states using weak nonlinearities , 2014 .

[21]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[22]  Harald Weinfurter,et al.  Embedded Bell-state analysis , 1998 .

[23]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[24]  Fengli Yan,et al.  Generation of four-photon polarization entangled state based on Einstein-Podolsky-Rosen entanglers , 2013, The European Physical Journal D.

[25]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[26]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[27]  Charles Santori,et al.  Triggered single photons from a quantum dot , 2001, QELS 2001.

[28]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[29]  Fengli Yan,et al.  Efficient scheme for three-photon Greenberger–Horne–Zeilinger state generation , 2012, 1204.0438.

[30]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[31]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[32]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[33]  Scheme for linear optical preparation of a type of four-photon entangled state with conventional photon detectors , 2009 .

[34]  Fu-Guo Deng,et al.  Efficient multipartite entanglement purification with the entanglement link from a subspace , 2011, 1110.0059.

[35]  Xin-Wen Wang,et al.  Nondestructive Greenberger-Horne-Zeilinger-state analyzer , 2013, Quantum Inf. Process..

[36]  Arun K. Pati,et al.  Probabilistic Quantum Teleportation , 2002, quant-ph/0210004.

[37]  L. Ye,et al.  Efficient scheme for the preparation of symmetric Dicke states via cross-Kerr nonlinearity , 2011 .

[38]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[39]  Fengli Yan,et al.  Probabilistic and controlled teleportation of unknown quantum states , 2003 .

[40]  Improving teleportation of continuous variables by local operations , 2004, quant-ph/0410185.

[41]  B. He,et al.  Efficient graph state generation and operation error detection with a controlled-path gate , 2013 .

[42]  Highly efficient scheme for the preparation of four-photon polarization entangled state via quantum non-demolition measurement with classical feed-forward , 2011 .

[43]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[44]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[45]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[46]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[47]  Andrzej Grudka,et al.  Nonmaximally entangled states can be better for multiple linear optical teleportation. , 2008, Physical review letters.

[48]  Seung-Woo Lee,et al.  Erratum: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits [Phys. Rev. A87, 022326 (2013)] , 2013 .

[49]  Hyunseok Jeong Quantum computation using weak nonlinearities: Robustness against decoherence , 2006 .

[50]  Bing He,et al.  Single-photon logic gates using minimal resources , 2009, 0909.0300.

[51]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[52]  Meng-Zheng Zhu,et al.  Quantum teleportation of an entangled 2-photon polarization state with preparing determinately two Bell states based on cross-Kerr nonlinearity , 2011 .

[53]  Gustavo Rigolin,et al.  Generalized teleportation protocol , 2006 .

[54]  Bing He,et al.  Efficient generation of universal two-dimensional cluster states with hybrid systems , 2010, 1005.1112.

[55]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[56]  Li Wanli,et al.  Erratum: Probabilistic teleportation and entanglement matching [Phys. Rev. A 61, 034301 (2000)] , 2007 .

[57]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[58]  Ting Gao,et al.  Two local observables are sufficient to characterize maximally entangled states of N qubits , 2010, 1011.0987.

[59]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[60]  A. Furusawa,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[61]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[62]  Ting Gao,et al.  Quantum logical networks for probabilistic teleportation of many particle state of general form , 2004, Quantum Inf. Comput..

[63]  Fengli Yan,et al.  Chain teleportation via partially entangled states , 2009, 0903.1422.