The Use of Loglinear Models for Assessing Differential Item Functioning Across Manifest and Latent Examinee Groups

Loglinear latent class models are used to detect differential item functioning (DIF). These models are formulated in such a manner that the attribute to be assessed may be continuous, as in a Rasch model, or categorical, as in Latent Class Mastery models. Further, an item may exhibit DIF with respect to a manifest grouping variable, a latent grouping variable, or both. Likelihood-ratio tests for assessing the presence of various types of DIF are described, and these methods are illustrated through the analysis of a "real world" data set.

[1]  A. Jensen,et al.  Bias in Mental Testing , 1981 .

[2]  C. Mitchell Dayton,et al.  The Nature and Use of State Mastery Models , 1980 .

[3]  J. R. Bergan Chapter 8: Latent-class Models in Educational Research , 1983 .

[4]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[5]  Tue Tjur,et al.  A Connection between Rasch's Item Analysis Model and a Multiplicative Poisson Model , 1982 .

[6]  H. Kelderman,et al.  Loglinear Rasch model tests , 1984 .

[7]  Implications of the Golden Rule Settlement for Test Construction , 1987 .

[8]  Noel A Cressie,et al.  Characterizing the manifest probabilities of latent trait models , 1983 .

[9]  L. A. Goodman,et al.  Latent Structure Analysis of a Set of Multidimensional Contingency Tables , 1984 .

[10]  Clement A. Stone,et al.  Latent class models for knowledge domains , 1985 .

[11]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[12]  H. O. Lancaster,et al.  Significance Tests in Discrete Distributions , 1961 .

[13]  W. H. Angoff,et al.  ITEM-RACE INTERACTION ON A TEST OF SCHOLASTIC APTITUDE , 1971 .

[14]  Comparison of Procedures for Detecting test-Item Bias with both Internal and External Ability Criteria , 1981 .

[15]  Manfred Kuechler,et al.  Surveying Subjective Phenomena. , 1985 .

[16]  Leo A. Goodman,et al.  Causal Analysis of Data from Panel Studies and Other Kinds of Surveys , 1973, American Journal of Sociology.

[17]  F. Krauss Latent Structure Analysis , 1980 .

[18]  W. H. Angoff,et al.  ITEM‐RACE INTERACTION ON A TEST OF SCHOLASTIC APTITUDE1 , 1973 .

[19]  Jacques A. Hagenaars,et al.  LCAG — Loglinear Modelling with Latent Variables: a Modified LISREL Approach , 1988 .

[20]  S. Haberman Analysis of qualitative data , 1978 .

[21]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[22]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[23]  R. Hoepfner,et al.  Investigating Test Bias. , 1972 .

[24]  G. J. Mellenbergh Contingency Table Models for Assessing Item Bias , 1982 .

[25]  George B. Macready,et al.  A probabilistic model for validation of behavioral hierarchies , 1976 .

[26]  John R. Bergan,et al.  Latent-Class Models in Educational Research , 1983 .

[27]  Lawrence M. Rudner Biased Item Detection Techniques. , 1980 .

[28]  L. A. Goodman The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach , 1974, American Journal of Sociology.

[29]  Dorothy T. Thayer,et al.  DIFFERENTIAL ITEM FUNCTIONING AND THE MANTEL‐HAENSZEL PROCEDURE , 1986 .

[30]  Steven J. Osterlind,et al.  Test item bias , 1983 .

[31]  L. L. Thurstone,et al.  A method of scaling psychological and educational tests. , 1925 .

[32]  R. McHugh Efficient estimation and local identification in latent class analysis , 1956 .

[33]  Henk Kelderman,et al.  Item bias detection using loglinear irt , 1989 .

[34]  L. A. Goodman The Analysis of Cross-Classified Data: Independence, Quasi-Independence, and Interactions in Contingency Tables with or without Missing Entries , 1968 .

[35]  Kentaro Yamamoto,et al.  HYBRID MODEL OF IRT AND LATENT CLASS MODELS , 1982 .

[36]  W. D. Linden,et al.  Forgetting, Guessing, and Mastery: The Macready and Dayton Models Revisited and Compared with a Latent Trait Approach , 1978 .

[37]  W. G. Cochran The $\chi^2$ Test of Goodness of Fit , 1952 .

[38]  T. Cleary,et al.  An Investigation of Item Bias , 1968 .

[39]  George B. Macready,et al.  Comparing Fit of Nonsubsuming Probability Models , 1985 .

[40]  Leo A. Goodman,et al.  A New Model for Scaling Response Patterns: An Application of the Quasi-Independence Concept , 1975 .

[41]  C. Mitchell Dayton,et al.  The Use of Probabilistic Models in the Assessment of Mastery , 1977 .

[42]  Louis Guttman,et al.  “Best possible” systematic estimates of communalities , 1956 .

[43]  Robert J. Mislevy,et al.  Modeling item responses when different subjects employ different solution strategies , 1990 .

[44]  C. Mitchell Dayton,et al.  A scaling model with response errors and intrinsically unscalable respondents , 1980 .

[45]  J. Scheuneman A METHOD OF ASSESSING BIAS IN TEST ITEMS , 1979 .

[46]  David Thissen,et al.  Beyond group-mean differences: The concept of item bias. , 1986 .