The sequence of events that underlie quantal transmission at central glutamatergic synapses

The properties of synaptic transmission were first elucidated at the neuromuscular junction. More recent work has examined transmission at synapses within the brain. Here we review the remarkable progress in understanding the biophysical and molecular basis of the sequential steps in this process. These steps include the elevation of Ca2+ in microdomains of the presynaptic terminal, the diffusion of transmitter through the fusion pore into the synaptic cleft and the activation of postsynaptic receptors. The results give insight into the factors that control the precision of quantal transmission and provide a framework for understanding synaptic plasticity.

[1]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[2]  R. Silver,et al.  Non‐NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. , 1996, The Journal of physiology.

[3]  A. Momiyama,et al.  Different types of calcium channels mediate central synaptic transmission , 1993, Nature.

[4]  B. Bean,et al.  Alteration of P-type calcium channel gating by the spider toxin omega-Aga-IVA. , 1997, Biophysical journal.

[5]  B Sakmann,et al.  Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers , 1998, The Journal of physiology.

[6]  W. Catterall Structure and function of voltage-gated sodium and calcium channels , 1991, Current Opinion in Neurobiology.

[7]  J. Rothman,et al.  A Clamping Mechanism Involved in SNARE-Dependent Exocytosis , 2006, Science.

[8]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[9]  R. Tsien,et al.  Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. , 1988, Science.

[10]  P Heggelund,et al.  The quantal size at retinogeniculate synapses determined from spontaneous and evoked EPSCs in guinea‐pig thalamic slices. , 1994, The Journal of physiology.

[11]  B. Sakmann,et al.  Calcium Secretion Coupling at Calyx of Held Governed by Nonuniform Channel–Vesicle Topography , 2002, The Journal of Neuroscience.

[12]  K. Gillis,et al.  The Origin of Quantal Size Variation: Vesicular Glutamate Concentration Plays a Significant Role , 2007, The Journal of Neuroscience.

[13]  Andrei Rozov,et al.  Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. , 2005, Cell calcium.

[14]  R. Tsien,et al.  Calcium channels: mechanisms of selectivity, permeation, and block. , 1987, Annual review of biophysics and biophysical chemistry.

[15]  B. Sakmann,et al.  Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. , 2003, The Journal of physiology.

[16]  K. Appenteng,et al.  Multimodal distribution of amplitudes of miniature and spontaneous EPSPs recorded in rat trigeminal motoneurones. , 1996, The Journal of physiology.

[17]  Zhuan Zhou,et al.  “Kiss-and-Run” Glutamate Secretion in Cultured and Freshly Isolated Rat Hippocampal Astrocytes , 2005, The Journal of Neuroscience.

[18]  R. Tsien,et al.  Single synaptic vesicles fusing transiently and successively without loss of identity , 2003, Nature.

[19]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[20]  E. Mccleskey,et al.  Permeation and selectivity in calcium channels. , 2003, Annual review of physiology.

[21]  M. Frotscher,et al.  Timing and efficacy of transmitter release at mossy fiber synapses in the hippocampal network , 2006, Pflügers Archiv.

[22]  M. Dennis,et al.  Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release , 1979, The Journal of cell biology.

[23]  V. Shahrezaei,et al.  Ca2+ from One or Two Channels Controls Fusion of a Single Vesicle at the Frog Neuromuscular Junction , 2006, The Journal of Neuroscience.

[24]  Bert Sakmann,et al.  Control of synaptic strength and timing by the release-site Ca2+ signal , 2005, Nature Neuroscience.

[25]  R. Tsien,et al.  Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  Miljanich Gp,et al.  Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. , 2004 .

[27]  John M. Bekkers,et al.  Presynaptic Ca2+ channels: a functional patchwork , 2003, Trends in Neurosciences.

[28]  R. Tsien,et al.  Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  H. Kasai,et al.  Number and Density of AMPA Receptors in Single Synapses in Immature Cerebellum , 2005, The Journal of Neuroscience.

[30]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[31]  T. Sejnowski,et al.  Independent Sources of Quantal Variability at Single Glutamatergic Synapses , 2003, The Journal of Neuroscience.

[32]  Rodolfo R. Llinás,et al.  Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy , 2007, Proceedings of the National Academy of Sciences.

[33]  S. Pantano,et al.  SNARE complexes and neuroexocytosis: how many, how close? , 2005, Trends in biochemical sciences.

[34]  Y. Yanagi,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2022 .

[35]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[36]  E. Réal,et al.  Analysis of synaptic ultrastructure without fixative using high‐pressure freezing and tomography , 2006, The European journal of neuroscience.

[37]  C. Jahr,et al.  Transporters Buffer Synaptically Released Glutamate on a Submillisecond Time Scale , 1997, The Journal of Neuroscience.

[38]  Yingming Zhao,et al.  The Presynaptic Particle Web Ultrastructure, Composition, Dissolution, and Reconstitution , 2001, Neuron.

[39]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[40]  R. Tsien,et al.  Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. , 1994, Science.

[41]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[42]  J. Zimmerberg,et al.  Synaptotagmin: fusogenic role for calcium sensor? , 2006, Nature Structural &Molecular Biology.

[43]  R. Schneggenburger,et al.  Presynaptic Capacitance Measurements and Ca2+ Uncaging Reveal Submillisecond Exocytosis Kinetics and Characterize the Ca2+ Sensitivity of Vesicle Pool Depletion at a Fast CNS Synapse , 2003, The Journal of Neuroscience.

[44]  N. Ziv,et al.  Unitary Assembly of Presynaptic Active Zones from Piccolo-Bassoon Transport Vesicles , 2003, Neuron.

[45]  Fan Zhang,et al.  Hemifusion in SNARE-mediated membrane fusion , 2005, Nature Structural &Molecular Biology.

[46]  H. Atwood,et al.  Quantal Size and Variation Determined by Vesicle Size in Normal and Mutant Drosophila Glutamatergic Synapses , 2002, The Journal of Neuroscience.

[47]  B Sakmann,et al.  Calcium Channel Types with Distinct Presynaptic Localization Couple Differentially to Transmitter Release in Single Calyx-Type Synapses , 1999, The Journal of Neuroscience.

[48]  G. Zamponi,et al.  Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels. , 2005, Cell calcium.

[49]  Antonio Malgaroli,et al.  Loose-patch recordings of single quanta at individual hippocampal synapses , 1997, Nature.

[50]  S. Siegelbaum,et al.  Altered Presynaptic Vesicle Release and Cycling during mGluR-Dependent LTD , 2002, Neuron.

[51]  J. Lisman,et al.  A large sustained Ca2+ elevation occurs in unstimulated spines during the LTP pairing protocol but does not change synaptic strength , 2002, Hippocampus.

[52]  A. Marty,et al.  Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients , 2000, Nature Neuroscience.

[53]  R.J. Miller,et al.  Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  D Ulrich,et al.  Miniature excitatory synaptic currents corrected for dendritic cable properties reveal quantal size and variance. , 1993, Journal of neurophysiology.

[55]  M. Jackson,et al.  Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals , 2002, Nature.

[56]  M. Häusser,et al.  Estimating the Time Course of the Excitatory Synaptic Conductance in Neocortical Pyramidal Cells Using a Novel Voltage Jump Method , 1997, The Journal of Neuroscience.

[57]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[58]  W. Regehr,et al.  Calcium control of transmitter release at a cerebellar synapse , 1995, Neuron.

[59]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[60]  Guosong Liu,et al.  Does the fusion pore contribute to synaptic plasticity? , 2004, Trends in Neurosciences.

[61]  C. Jahr,et al.  Multivesicular Release at Climbing Fiber-Purkinje Cell Synapses , 2001, Neuron.

[62]  E. Stanley,et al.  Characterization of a calcium current in a vertebrate cholinergic presynaptic nerve terminal , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  B. Katz Neural transmitter release: From quantal secretion to exocytosis and beyond—The Fenn Lecture , 1996, Journal of neurocytology.

[64]  Mark J. Wall,et al.  Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse , 1998, Nature Neuroscience.

[65]  W G Regehr,et al.  Timing of synaptic transmission. , 1999, Annual review of physiology.

[66]  R. Tsien,et al.  Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Liming He,et al.  Two modes of fusion pore opening revealed by cell-attached recordings at a synapse , 2006, Nature.

[68]  A. Momiyama,et al.  Development of Inhibitory Synaptic Currents in Rat Spinal Neurons , 1993, Annals of the New York Academy of Sciences.

[69]  S. Raghavachari,et al.  Properties of quantal transmission at CA1 synapses. , 2004, Journal of neurophysiology.

[70]  I. Raman,et al.  The mechanism of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor desensitization after removal of glutamate. , 1995, Biophysical journal.

[71]  M. Jackson,et al.  Fusion pores and fusion machines in Ca2+-triggered exocytosis. , 2006, Annual review of biophysics and biomolecular structure.

[72]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[73]  A. Marty,et al.  Presynaptic Ryanodine-Sensitive Calcium Stores Contribute to Evoked Neurotransmitter Release at the Basket Cell-Purkinje Cell Synapse , 2003, The Journal of Neuroscience.

[74]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[75]  M. Sheng,et al.  Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins , 2006, Biological chemistry.

[76]  B. Sakmann,et al.  Pre‐ and postsynaptic whole‐cell recordings in the medial nucleus of the trapezoid body of the rat. , 1995, The Journal of physiology.

[77]  M. Mayer,et al.  Mechanism of glutamate receptor desensitization , 2002, Nature.

[78]  S. Vijayaraghavan,et al.  Modulation of Presynaptic Store Calcium Induces Release of Glutamate and Postsynaptic Firing , 2003, Neuron.

[79]  Terrence J Sejnowski,et al.  A Monte Carlo model reveals independent signaling at central glutamatergic synapses. , 2002, Biophysical journal.

[80]  A. Mauro,et al.  TURNOVER OF TRANSMITTER AND SYNAPTIC VESICLES AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[81]  R. Llinás,et al.  Are the presynaptic membrane particles the calcium channels? , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[82]  D. Pietrobon,et al.  Calcium channels and channelopathies of the central nervous system , 2002, Molecular Neurobiology.

[83]  C. Stricker,et al.  The contribution of intracellular calcium stores to mEPSCs recorded in layer II neurones of rat barrel cortex , 2002, The Journal of physiology.

[84]  Thomas A. Nielsen,et al.  Modulation of Glutamate Mobility Reveals the Mechanism Underlying Slow-Rising AMPAR EPSCs and the Diffusion Coefficient in the Synaptic Cleft , 2004, Neuron.

[85]  J. Bornstein Spontaneous multiquantal release at synapses in guinea‐pig hypogastric ganglia: evidence that release can occur in bursts. , 1978, The Journal of physiology.

[86]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.

[87]  R. Tsien,et al.  Molecular diversity of voltage-dependent Ca2+ channels. , 1991, Trends in pharmacological sciences.

[88]  George J. Augustine,et al.  Synaptotagmin I Synchronizes Transmitter Release in Mouse Hippocampal Neurons , 2004, The Journal of Neuroscience.

[89]  R. Tsien,et al.  Distinctive biophysical and pharmacological properties of class A (BI) calcium channel α 1 subunits , 1993, Neuron.

[90]  J. Howe,et al.  Concentration-dependent substate behavior of native AMPA receptors , 2000, Nature Neuroscience.

[91]  Eric R. Kandel,et al.  Recruitment of New Sites of Synaptic Transmission During the cAMP-Dependent Late Phase of LTP at CA3–CA1 Synapses in the Hippocampus , 1997, Neuron.

[92]  C. Stevens,et al.  Three modes of synaptic vesicular recycling revealed by single-vesicle imaging , 2003, Nature.

[93]  B. Walmsley,et al.  Counting quanta: Direct measurements of transmitter release at a central synapse , 1995, Neuron.

[94]  C F Stevens,et al.  Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. T. Yue,et al.  Differential Occurrence of Reluctant Openings in G-Protein–Inhibited N- and P/Q-Type Calcium Channels , 2000, The Journal of general physiology.

[96]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[97]  N. Melamed,,et al.  Confocal microscopy reveals coordinated calcium fluctuations and oscillations in synaptic boutons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  G. Schiavo,et al.  Exocytosis , 2004 .

[99]  T. Reese,et al.  Structural changes after transmitter release at the frog neuromuscular junction , 1981, The Journal of cell biology.

[100]  T. Bartol,et al.  Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[101]  J. Magee,et al.  Mechanism of the distance‐dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons , 2003, The Journal of physiology.

[102]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[103]  M. Jackson,et al.  Electrostatic interactions between the syntaxin membrane anchor and neurotransmitter passing through the fusion pore. , 2005, Biophysical journal.

[104]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[105]  T. Ishikawa,et al.  Developmental Increase in Vesicular Glutamate Content Does Not Cause Saturation of AMPA Receptors at the Calyx of Held Synapse , 2003, The Journal of Neuroscience.

[106]  E. F. Stanley Single calcium channels on a cholinergic presynaptic nerve terminal , 1991, Neuron.

[107]  J. Lisman,et al.  The high variance of AMPA receptor- and NMDA receptor-mediated responses at single hippocampal synapses: Evidence for multiquantal release , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Howe,et al.  How AMPA Receptor Desensitization Depends on Receptor Occupancy , 2003, The Journal of Neuroscience.

[109]  I. Forsythe,et al.  Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. , 1994, The Journal of physiology.

[110]  Andreas Mayer,et al.  Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion , 2005, Nature.

[111]  R. Silver,et al.  High-Probability Uniquantal Transmission at Excitatory Synapses in Barrel Cortex , 2003, Science.

[112]  C F Stevens,et al.  The tetrameric structure of a glutamate receptor channel. , 1998, Science.

[113]  Y. Shin,et al.  Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I , 2006, Nature Structural &Molecular Biology.

[114]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[115]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[116]  S. W. Kuffler,et al.  Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[117]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[118]  Y. Sahara,et al.  Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse , 2001, The Journal of physiology.

[119]  M. Jackson,et al.  Fusion Pores and Fusion Machines in Ca 2+ -Triggered , 2006 .

[120]  A. Marty,et al.  Developmental Changes in Parvalbumin Regulate Presynaptic Ca2+ Signaling , 2005, The Journal of Neuroscience.

[121]  M. Adams,et al.  CALCIUM CHANNEL DIVERSITY AND NEUROTRANSMITTER RELEASE : THE OMEGA -CONOTOXINS AND OMEGA -AGATOXINS , 1994 .

[122]  J. Rizo,et al.  NMR measurement of the off rate from the first calcium‐binding site of the synaptotagmin I C2A domain , 2002, FEBS letters.

[123]  Aaron DiAntonio,et al.  Postfusional Control of Quantal Current Shape , 2004, Neuron.

[124]  T. Turner,et al.  Enhanced G protein‐dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel‐mutant mouse, tottering , 2003, The Journal of physiology.

[125]  J. Fiala,et al.  Polyribosomes Redistribute from Dendritic Shafts into Spines with Enlarged Synapses during LTP in Developing Rat Hippocampal Slices , 2002, Neuron.

[126]  R. Llinás,et al.  Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system , 1992, Trends in Neurosciences.

[127]  Matthias H Hennig,et al.  Acceleration of AMPA receptor kinetics underlies temperature‐dependent changes in synaptic strength at the rat calyx of Held , 2007, The Journal of physiology.

[128]  J. W. Karpen,et al.  Single cyclic nucleotide-gated channels locked in different ligand-bound states , 1997, Nature.

[129]  Nathan R. Wilson,et al.  Presynaptic Regulation of Quantal Size by the Vesicular Glutamate Transporter VGLUT1 , 2005, The Journal of Neuroscience.

[130]  R. Tsien,et al.  Three types of neuronal calcium channel with different calcium agonist sensitivity , 1985, Nature.

[131]  S. Alford,et al.  G protein βγ-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties , 2006 .

[132]  B. Gustafsson,et al.  Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus , 2001, The Journal of physiology.

[133]  P. Maycox,et al.  Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate , 1989, Neuron.

[134]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[135]  P Heggelund,et al.  Quantal properties of spontaneous EPSCs in neurones of the guinea‐pig dorsal lateral geniculate nucleus. , 1996, The Journal of physiology.

[136]  E. F. Stanley The calcium channel and the organization of the presynaptic transmitter release face , 1997, Trends in Neurosciences.

[137]  Lu-Yang Wang,et al.  Developmental Transformation of the Release Modality at the Calyx of Held Synapse , 2005, The Journal of Neuroscience.

[138]  Arne Stoschek,et al.  The architecture of active zone material at the frog's neuromuscular junction , 2001, Nature.

[139]  C. Jahr,et al.  Multivesicular Release at Schaffer Collateral–CA1 Hippocampal Synapses , 2006, The Journal of Neuroscience.

[140]  M. Mayer,et al.  Structure and function of glutamate receptor ion channels. , 2004, Annual review of physiology.

[141]  J. W. Karpen,et al.  Opening Mechanism of a Cyclic Nucleotide–gated Channel Based on Analysis of Single Channels Locked in Each Liganded State , 1999, The Journal of general physiology.

[142]  H. Bellen,et al.  The architecture of the active zone in the presynaptic nerve terminal. , 2004, Physiology.

[143]  E. Gouaux,et al.  Measurement of Conformational Changes accompanying Desensitization in an Ionotropic Glutamate Receptor , 2006, Cell.

[144]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[145]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[146]  Felix Felmy,et al.  The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[147]  R. Tsien,et al.  Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’ , 2000, Nature Neuroscience.

[148]  G. Augustine,et al.  Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca2+-Dependent Neurotransmitter Release , 2004, The Journal of Neuroscience.

[149]  G. Major,et al.  Quantal analysis of the synaptic excitation of CA1 hippocampal pyramidal cells. , 1994, Advances in second messenger and phosphoprotein research.

[150]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[151]  P. Jonas,et al.  Dynamic Control of Presynaptic Ca2+ Inflow by Fast-Inactivating K+ Channels in Hippocampal Mossy Fiber Boutons , 2000, Neuron.

[152]  R. Tsien,et al.  Nomenclature of Voltage-Gated Calcium Channels , 2000, Neuron.

[153]  E. Gouaux,et al.  Mechanisms for Activation and Antagonism of an AMPA-Sensitive Glutamate Receptor Crystal Structures of the GluR2 Ligand Binding Core , 2000, Neuron.

[154]  C. Stevens,et al.  Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[155]  K. Campbell,et al.  The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel , 1988, Trends in Neurosciences.

[156]  J. Luebke,et al.  Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus , 1993, Neuron.

[157]  R. Scheller,et al.  Three SNARE complexes cooperate to mediate membrane fusion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[158]  S. J. Smith,et al.  Calcium entry and transmitter release at voltage‐clamped nerve terminals of squid. , 1985, The Journal of physiology.

[159]  Anatol C. Kreitzer,et al.  Interaction of Postsynaptic Receptor Saturation with Presynaptic Mechanisms Produces a Reliable Synapse , 2002, Neuron.

[160]  Alan Fine,et al.  Calcium Stores in Hippocampal Synaptic Boutons Mediate Short-Term Plasticity, Store-Operated Ca2+ Entry, and Spontaneous Transmitter Release , 2001, Neuron.

[161]  Guosong Liu,et al.  A Developmental Switch in Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA Receptor Activation , 2001, Neuron.

[162]  R. Tsien,et al.  Variability of Neurotransmitter Concentration and Nonsaturation of Postsynaptic AMPA Receptors at Synapses in Hippocampal Cultures and Slices , 1999, Neuron.

[163]  M. Jackson,et al.  Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis , 2004, Science.

[164]  W. Catterall,et al.  Calcium-dependent interaction of N-type calcium channels with the synaptic core complex , 1996, Nature.

[165]  B Sakmann,et al.  Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch‐clamp study. , 1990, The Journal of physiology.

[166]  Jeffrey S. Diamond,et al.  Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC , 1995, Neuron.

[167]  S. Siegelbaum,et al.  Regulation of hippocampal transmitter release during development and long-term potentiation. , 1995, Science.

[168]  L M Zampighi,et al.  Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. , 2006, Biophysical journal.

[169]  Z. Nusser,et al.  Quantal Size Is Independent of the Release Probability at Hippocampal Excitatory Synapses , 2005, The Journal of Neuroscience.

[170]  R. Tsien,et al.  Kiss‐and‐run and full‐collapse fusion as modes of exo‐endocytosis in neurosecretion , 2006, Journal of neurochemistry.

[171]  Paul Greengard,et al.  Three-Dimensional Architecture of Presynaptic Terminal Cytomatrix , 2007, The Journal of Neuroscience.

[172]  Takeshi Sakaba,et al.  The Coupling between Synaptic Vesicles and Ca2+ Channels Determines Fast Neurotransmitter Release , 2007, Neuron.

[173]  S. Raghavachari,et al.  A Unified Model of the Presynaptic and Postsynaptic Changes During LTP at CA1 Synapses , 2006, Science's STKE.

[174]  Miljanich Gp,et al.  Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. , 2004, Current medicinal chemistry.

[175]  A. Momiyama,et al.  Developmental Changes in Calcium Channel Types Mediating Central Synaptic Transmission , 2000, The Journal of Neuroscience.

[176]  J. Feldman,et al.  Quantal synaptic transmission in phrenic motor nucleus. , 1992, Journal of neurophysiology.

[177]  P. Pavlidis,et al.  Pair Recordings Reveal All-Silent Synaptic Connections and the Postsynaptic Expression of Long-Term Potentiation , 2001, Neuron.

[178]  David A DiGregorio,et al.  Changes in synaptic structure underlie the developmental speeding of AMPA receptor–mediated EPSCs , 2005, Nature Neuroscience.

[179]  R. Schneggenburger,et al.  Presynaptic Ca2+ Requirements and Developmental Regulation of Posttetanic Potentiation at the Calyx of Held , 2005, The Journal of Neuroscience.

[180]  R. Tsien,et al.  Frequency-Dependent Kinetics and Prevalence of Kiss-and-Run and Reuse at Hippocampal Synapses Studied with Novel Quenching Methods , 2006, Neuron.

[181]  Bert Sakmann,et al.  Three-Dimensional Reconstruction of a Calyx of Held and Its Postsynaptic Principal Neuron in the Medial Nucleus of the Trapezoid Body , 2002, The Journal of Neuroscience.

[182]  W. Trimble,et al.  SNARE proteins contribute to calcium cooperativity of synaptic transmission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[183]  E. Gouaux,et al.  Structure of a glutamate-receptor ligand-binding core in complex with kainate , 1998, Nature.