Application of Weakest Link Probabilistic Framework for Fatigue Notch Factor to Aero Engine Materials

This paper is concerned with the extension of a recently developed probabilistic framework based on Weibull’s weakest link and extreme-value statistics to aero-engine materials like titanium alloy and nickel-base super alloys using simulation strategies that capture both the essence of notch root stress gradient and the complexity of realistic microstructures. In this paper, notch size effects and notch root inelastic behavior are combined with probability distributions of microscale stress-strain gradient and small crack initiation to inform minimum life design methods. A new approach which can be applied using crystal plasticity finite element or closed-form solution is also proposed as a more robust approach for determining fatigue notch factor than the existing classical methods. The fatigue notch factors predicted using the new framework are in good agreements with experimental results obtained from literature for notched titanium alloy specimens subjected to uniaxial cyclic loads with various stress ratio.

[1]  François Hild,et al.  A probabilistic model for multiaxial high cycle fatigue , 2007 .

[2]  David Taylor,et al.  The fatigue behaviour of three-dimensional stress concentrations , 2005 .

[3]  David L. McDowell,et al.  Crystal plasticity modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading , 2009 .

[4]  G. Owolabi,et al.  Microstructure-dependent fatigue damage process zone and notch sensitivity index , 2011 .

[5]  J. Lautridou,et al.  A PROBABILISTIC MODEL FOR PREDICTION OF LCF SURFACE CRACK INITIATION IN PM ALLOYS , 1993 .

[6]  Theodore Nicholas,et al.  High Cycle Fatigue: A Mechanics of Materials Perspective , 2006 .

[7]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[8]  Arne Fjeldstad,et al.  Non‐local stress approach for fatigue assessment based on weakest‐link theory and statistics of extremes , 2007 .

[9]  R. Miner,et al.  Fatigue crack initiation and propagation in several nickel-base superalloys at 650°C , 1983 .

[10]  A. Buch,et al.  Fatigue Strength Calculation , 1986 .

[11]  R. Fleischer,et al.  Substitutional solution hardening , 1963 .

[12]  Jena Jeong,et al.  Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots , 2007 .

[13]  David L. McDowell,et al.  Estimating fatigue sensitivity to polycrystalline Ni‐base superalloy microstructures using a computational approach , 2007 .

[14]  R. Bullough,et al.  Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Z. P. Bažant,et al.  Size effect on structural strength: a review , 1999 .

[16]  Randy J. Gu,et al.  An improved, automated finite element analysis for fatigue life predictions of notched components , 2004 .

[17]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[18]  F. Morel,et al.  Probabilistic approach in high-cycle multiaxial fatigue: volume and surface effects , 2004 .

[19]  S. L. Phoenix,et al.  Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite , 1991 .

[20]  G. Maurer 3 – Primary and Secondary Melt Processing—Superalloys , 1989 .

[21]  David L. McDowell,et al.  Microstructure-scale modeling of HCF deformation , 2003 .

[22]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[23]  E. Orowan,et al.  Problems of plastic gliding , 1940 .

[24]  M. Benedetti,et al.  Experimental investigation on the propagation of fatigue cracks emanating from sharp notches , 2008 .

[25]  H. Hattori,et al.  EVALUATION OF P/M U720 FOR GAS TURBINE ENGINE DISK APPLICATION , 1996 .

[26]  L. Kubin,et al.  The low-temperature plastic deformation of α-titanium and the core structure of a-type screw dislocations , 1988 .

[27]  Jean Lemaitre,et al.  Damage 90: a post processor for crack initiation , 1994 .

[28]  Tim Topper,et al.  An experimental study of the effect of a flaw at a notch root on the fatigue life of cast Al 319 , 1998 .

[29]  J. H. Westbrook Chapter 48 Superalloys (Ni-base) and Dislocations — an Introduction , 1996 .

[30]  José A.F.O. Correia,et al.  Fatigue assessment of a riveted shear splice based on a probabilistic model , 2010 .

[31]  A. Argon CHAPTER 21 – MECHANICAL PROPERTIES OF SINGLE-PHASE CRYSTALLINE MEDIA: DEFORMATION AT LOW TEMPERATURES , 1996 .

[32]  W. W. Milligan,et al.  High frequency fatigue crack propagation behavior of a nickel-base turbine disk alloy , 1999 .

[33]  D. McDowell,et al.  A three-dimensional crystal plasticity model for duplex Ti–6Al–4V , 2007 .

[34]  A. Deruyttere,et al.  Multi-component solid solution hardening , 1977 .

[35]  A. Bussac PREDICTION OF THE COMPETITION BETWEEN SURFACE AND INTERNAL FATIGUE CRACK INITIATION IN PM ALLOYS , 2007 .

[36]  Boulent. Imam Fatigue Analysis of Riveted Railway Bridges. , 2006 .

[37]  R. McGinty Multiscale representation of polycrystalline inelasticity , 2001 .

[38]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[39]  Ostash,et al.  A phenomenological model of fatigue macrocrack initiation near stress concentrators , 1999 .

[40]  W. Betteridge,et al.  Development of superalloys , 1987 .

[41]  H. Kuroki,et al.  Fatigue life prediction of small notched Ti–6Al–4V specimens using critical distance☆ , 2010 .

[42]  R. B. Heywood,et al.  The Size Effect in Fatigue of Plain and Notched Steel Specimens Loaded under Reversed Direct Stress , 1951 .

[43]  D. Bettge,et al.  “Cube slip” in near-[111] oriented specimens of a single-crystal nickel-base superalloy , 1999 .

[44]  A. Buch Analytical approach to size and notch-size effects in fatigue of aircraft material specimens , 1974 .

[45]  Tim J. Carter,et al.  Common failures in gas turbine blades , 2005 .

[46]  Paul Kuhn,et al.  An engineering method for estimating notch-size effect in fatigue tests on steel , 1952 .

[47]  Rudolph Earl Peterson,et al.  Stress concentration design factors : charts and relations useful in making strength calculations for machine parts and structural elements , 1953 .

[48]  D. McDowell,et al.  Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy , 2005 .

[49]  Jee Soo Kim Parameter Estimation in Reliability and Life Span Models , 1991 .

[50]  I. V. Papadopoidos,et al.  Gradient-dependent multiaxial high-cycle fatigue criterion , 2013 .

[51]  R. Asaro,et al.  Micromechanics of Crystals and Polycrystals , 1983 .

[52]  V. Vítek,et al.  The asymmetry of the flow stress in Ni3(Al,Ta) single crystals , 1984 .

[53]  Tresa M. Pollock,et al.  Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys , 2009 .

[54]  Yao Weixing,et al.  Stress field intensity approach for predicting fatigue life , 1993 .

[55]  Ali A. Al-Mubarak,et al.  Jet Impingement Cooling in Gas Turbines for Improving Thermal Efficiency and Power Density , 2011 .

[56]  D. McDowell,et al.  Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V , 2007 .

[57]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[58]  François Hild,et al.  Dynamic fragmentation of brittle solids: a multi-scale model , 2002 .

[59]  Sheri Sheppard,et al.  Field Effects in Fatigue Crack Initiation: Long Life Fatigue Strength , 1991 .

[60]  Michael Todinov,et al.  Probability distribution of fatigue life controlled by defects , 2001 .

[61]  Z. P. BazÏant,et al.  Size effect on structural strength : a review , 1999 .

[62]  V. V. Panasyuk,et al.  Fatigue process zone at notches , 2001 .

[63]  Thierry Palin-Luc,et al.  Estimation of the fatigue strength distribution in high-cycle multiaxial fatigue taking into account the stress–strain gradient effect , 2006 .

[64]  D. Marquis,et al.  A statistical approach to the rupture of brittle materials , 1992 .

[65]  D. McDowell,et al.  Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100 , 2010 .

[66]  Thierry Palin-Luc,et al.  A volumetric energy based high cycle multiaxial fatigue citerion , 2003 .

[67]  Chantier,et al.  A probabilistic approach to predict the very high-cycle fatigue behaviour of spheroidal graphite cast iron structures , 2000 .

[68]  Stéphane Roux,et al.  Fatigue initiation in heterogeneous brittle materials , 1991 .

[69]  Gunnar Härkegård,et al.  Probabilistic fatigue assessment of a hydro-turbine blade model , 2006 .

[70]  J. Bassani,et al.  Non-Schmid yield behavior in single crystals , 1992 .

[71]  H. Neuber Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law , 1961 .

[72]  F. Larson,et al.  Properties of Textured Titanium Alloys , 1974 .

[73]  M. Olsson,et al.  On the effect of random defects on the fatigue notch factor at different stress ratios , 2012 .

[74]  A. Clifford Cohen,et al.  Parameter estimation in reliability and life span models , 1988 .

[75]  J. Rice,et al.  Constitutive analysis of elastic-plastic crystals at arbitrary strain , 1972 .

[76]  Niu Zhong-rong,et al.  Effect of notch dimension on the fatigue life of V-notched structure , 2011 .

[77]  Rajiv A. Naik,et al.  A critical plane gradient approach for the prediction of notched HCF life , 2005 .

[78]  R. Peterson,et al.  Stress Concentration Factors , 1974 .

[79]  T. Nicholas,et al.  Notch size effects in HCF behavior of Ti–6Al–4V , 1999 .

[80]  J. Mandel Thermodynamics and Plasticity , 1973 .

[81]  D. McDowell,et al.  Effects of Microstructure Variability on Intrinsic Fatigue Resistance of Nickel-base Superalloys – A Computational Micromechanics Approach , 2006 .

[82]  G. Owolabi,et al.  A Micromechanics-Based Fatigue Damage Process Zone , 2011 .

[83]  A. Brückner-foit,et al.  Lifetime distribution of notched components containing void defects , 2006 .

[84]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[85]  I. Papadopoulos A HIGH‐CYCLE FATIGUE CRITERION APPLIED IN BIAXIAL AND TRIAXIAL OUT‐OF‐PHASE STRESS CONDITIONS , 1995 .

[86]  Yao Weixing,et al.  On the fatigue notch factor, Kf , 1995 .

[87]  J. Bassani,et al.  Non-associated plastic flow in single crystals , 1992 .

[88]  Feargal Brennan,et al.  Mode i stress intensity factors for edge cracks emanating from 2-D U-notches using composition of SIF weight functions , 2006 .

[89]  D. Pope,et al.  The orientation and temperature dependence of the yield stress of Ni3 (Al, Nb) single crystals , 1979 .

[90]  Mahesh M. Shenoy,et al.  Constitutive Modeling and Life Prediction in Ni-Base Superalloys , 2006 .

[91]  H. Bomas,et al.  Application of a weakest‐link concept to the fatigue limit of the bearing steel SAE 52100 in a bainitic condition , 1999 .

[92]  André Pineau,et al.  Probabilistic life of DA 718 for aircraft engine disks , 2005 .

[93]  Vassilis P. Panoskaltsis,et al.  INVARIANT FORMULATION OF A GRADIENT DEPENDENT MULTIAXIAL HIGH-CYCLE FATIGUE CRITERION , 1996 .

[94]  F. V. Lawrence,et al.  MODELING THE LONG‐LIFE FATIGUE BEHAVIOR OF A CAST ALUMINUM ALLOY , 1993 .

[95]  David L. McDowell,et al.  Probabilistic framework for a microstructure-sensitive fatigue notch factor , 2010 .

[96]  M. Heilmaier,et al.  Order strengthening in the cast nickel-based superalloy IN 100 at room temperature , 2001 .

[97]  Weiju Ren,et al.  Notch size effects on high cycle fatigue limit stress of Udimet 720 , 2003 .

[98]  Michael Todinov Equations and a fast algorithm for determining the probability of failure initiated by flaws , 2006 .

[99]  H. Conrad Thermally activated deformation of metals , 1964 .

[100]  A. Wormsen,et al.  A statistical investigation of fatigue behaviour according to Weibull's weakest link theory , 2013 .

[101]  D. Bettge,et al.  Tension—compression asymmetry of the (001) single crystal nickel base superalloy SC16 under cyclic loading at elevated temperatures , 1996 .

[102]  N. Mott,et al.  Dislocation theory and transient creep , 1948 .

[103]  B. Fedelich,et al.  Modelling the orientation and direction dependence of the critical resolved shear stress of nickel-base superalloy single crystals , 2000 .

[104]  B. Tomkins FATIGUE CRACK PROPAGATION: AN ANALYSIS. , 1968 .

[105]  G. Glinka,et al.  A method of elastic-plastic stress and strain calculation at a notch root , 1981 .

[106]  A. Kallmeyer,et al.  Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V , 2002 .

[107]  T. Nicholas,et al.  On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti–6Al–4V☆ , 2005 .

[108]  Jean Lemaitre,et al.  A two scale damage concept applied to fatigue , 1999 .

[109]  W. Weibull A statistical theory of the strength of materials , 1939 .