Euclidean skeletons using closest points

In this paper, we present an efficient algorithm for computing the Euclidean skeleton of an object directly from a point cloud representation on an underlying grid. The key point of this algorithm is to identify those grid points that are (approximately) on the skeleton using the closest point information of a grid point and its neighbors. The three main ingredients of the algorithm are: (1) computing closest point information efficiently on a grid, (2) identifying possible skeletal points based on the number of closest points of a grid point and its neighbors with smaller distances, (3) applying a distance ordered homotopic thinning process to remove the non-skeletal points while preserving the end points or the edge points of the skeleton. Computational examples in 2D and 3D are presented.

[1]  Arthur W. Toga,et al.  Three-dimensional skeleton and centerline generation based on an approximate minimum distance field , 1998, The Visual Computer.

[2]  Jacques-Olivier Lachaud,et al.  Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..

[3]  Robert L. Ogniewicz,et al.  Discrete Voronoi skeletons , 1992 .

[4]  G. F. Roach,et al.  Inverse problems and imaging , 1991 .

[5]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[6]  Antoine Manzanera,et al.  Medial faces from a concise 3D thinning algorithm , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[7]  Benjamin B. Kimia,et al.  Symmetry Maps of Free-Form Curve Segments via Wave Propagation , 2004, International Journal of Computer Vision.

[8]  Grégoire Malandain,et al.  Euclidean skeletons , 1998, Image Vis. Comput..

[9]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[10]  Gabriella Sanniti di Baja,et al.  Ridge points in Euclidean distance maps , 1992, Pattern Recognit. Lett..

[11]  Y. Tsai Rapid and accurate computation of the distance function using grids , 2002 .

[12]  Michel Schmitt,et al.  Some examples of algorithm analysis in computational geometry by means of mathematical morphological techniques , 1988, Geometry and Robotics.

[13]  P. Danielsson Euclidean distance mapping , 1980 .

[14]  Aly A. Farag,et al.  On the Extraction of Curve Skeletons using Gradient Vector Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  H. Blum Biological shape and visual science (part I) , 1973 .

[16]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Damian J. Sheehy,et al.  Shape Description By Medial Surface Construction , 1996, IEEE Trans. Vis. Comput. Graph..

[18]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[19]  Frederic Fol Leymarie Three-dimensional shape representation via shock flows , 2003 .

[20]  Gilles Bertrand,et al.  A parallel thinning algorithm for medial surfaces , 1995, Pattern Recognit. Lett..

[21]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[22]  Edwin R. Hancock,et al.  Correcting Curvature-Density Effects in the Hamilton–Jacobi Skeleton , 2006, IEEE Transactions on Image Processing.

[23]  John A. Goldak,et al.  Constructing discrete medial axis of 3-D objects , 1991, Int. J. Comput. Geom. Appl..

[24]  Olivier D. Faugeras,et al.  Level Sets and Distance Functions , 2000, ECCV.

[25]  D. Kirkpatrick,et al.  A Framework for Computational Morphology , 1985 .

[26]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[27]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[28]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[29]  Jen-Hui Chuang,et al.  Skeletonization of Three-Dimensional Object Using Generalized Potential Field , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  R. Kikinis,et al.  Characterization and recognition of 3D organ shape in medical image analysis using skeletonization , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[31]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[32]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[33]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[34]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[35]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  PudneyChris Distance-Ordered Homotopic Thinning , 1998 .

[37]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[38]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[39]  Benjamin B. Kimia,et al.  Symmetry Maps of Free-Form Curve Segments via Wave Propagation , 2003, Proceedings of the Seventh IEEE International Conference on Computer Vision.