Monoester copillar[5]arenes: synthesis, unusual self-inclusion behavior, and molecular recognition.

The self-inclusion behavior of monoester copillar[5]arenes depends on the position of the ester group, which causes different guest selectivities. Monoester copillar[5]arenes bearing an acetate chain can form stable self-inclusion complexes in low- and high-concentration solution and exhibit high guest selectivity. However, a monoester copillar[5]arene bearing a butyrate chain can not form a self-inclusion complex and exhibits low guest selectivity. Thus, a new class of stable self-inclusion complexes of copillar[5]arenes was explored to improve the selectivity of molecular recognition.

[1]  Z. Fu,et al.  Dimerization control in the self-assembly behavior of copillar[5]arenes bearing ω-hydroxyalkoxy groups. , 2012, The Journal of organic chemistry.

[2]  Jun-Li Hou,et al.  Single-molecular artificial transmembrane water channels. , 2012, Journal of the American Chemical Society.

[3]  Chunju Li,et al.  Complexation of neutral 1,4-dihalobutanes with simple pillar[5]arenes that is dominated by dispersion forces. , 2012, Organic & biomolecular chemistry.

[4]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[5]  Zhenxia Chen,et al.  Highly effective binding of neutral dinitriles by simple pillar[5]arenes. , 2012, Chemical communications.

[6]  J. F. Stoddart,et al.  A self-complexing and self-assembling pillar[5]arene. , 2012, Chemical communications.

[7]  K. Sharma,et al.  Pillar[5]arenes: fascinating cyclophanes with a bright future. , 2012, Chemical Society reviews.

[8]  T. Ogoshi,et al.  Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials , 2012, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[9]  Wen Si,et al.  Selective artificial transmembrane channels for protons by formation of water wires. , 2011, Angewandte Chemie.

[10]  J. Terao Permethylated cyclodextrin-based insulated molecular wires , 2011 .

[11]  Y. Yu,et al.  Novel neutral guest recognition and interpenetrated complex formation from pillar[5]arenes. , 2011, Chemical communications.

[12]  Y. Yu,et al.  Complexation of 1,4-bis(pyridinium)butanes by negatively charged carboxylatopillar[5]arene. , 2011, The Journal of organic chemistry.

[13]  H. Meier,et al.  Efficient synthesis of copillar[5]arenes and their host-guest properties with dibromoalkanes. , 2011, Organic & biomolecular chemistry.

[14]  Feihe Huang,et al.  Preparation of Pillar[n]arenes by Cyclooligomerization of 2,5‐Dialkoxybenzyl Alcohols or 2,5‐Dialkoxybenzyl Bromides , 2011 .

[15]  Feihe Huang,et al.  Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces. , 2011, Organic letters.

[16]  T. Ogoshi,et al.  Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. , 2011, Chemical communications.

[17]  Zhenxia Chen,et al.  Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes , 2011 .

[18]  Y. Yu,et al.  Pillar[5]arene decaamine: synthesis, encapsulation of very long linear diacids and formation of ion pair-stopped [2]rotaxanes. , 2011, Chemical communications.

[19]  J. F. Stoddart,et al.  Monofunctionalized pillar[5]arene as a host for alkanediamines. , 2011, Journal of the American Chemical Society.

[20]  Zhi Ma,et al.  Formation of linear supramolecular polymers that is driven by C-H⋅⋅⋅π interactions in solution and in the solid state. , 2011, Angewandte Chemie.

[21]  D. Schollmeyer,et al.  Synthesis and Conformational Properties of Nonsymmetric Pillar[5]arenes and Their Acetonitrile Inclusion Compounds , 2010 .

[22]  Yu Liu,et al.  Thermodynamic origin of selective binding of β-cyclodextrin derivatives with chiral chromophoric substituents toward steroids. , 2010, The journal of physical chemistry. B.

[23]  T. Ogoshi,et al.  Synthesis, conformational and host-guest properties of water-soluble pillar[5]arene. , 2010, Chemical communications.

[24]  H. Meier,et al.  Eine leichte und effiziente Herstellung von Pillararenen und einem Pillarchinon , 2009 .

[25]  Lingyun Wang,et al.  A facile and efficient preparation of pillararenes and a pillarquinone. , 2009, Angewandte Chemie.

[26]  N. Kambe,et al.  Synthesis of organic-soluble conjugated polyrotaxanes by polymerization of linked rotaxanes. , 2009, Journal of the American Chemical Society.

[27]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[28]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[29]  D. Qu,et al.  A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. , 2007, Chemical communications.

[30]  D. Zhao,et al.  "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. , 2006, Accounts of chemical research.

[31]  Yu Liu,et al.  Thermodynamic Origin of Molecular Selective Binding of Bile Salts by Aminated β-Cyclodextrins , 2003 .

[32]  H. Ikeda,et al.  Fluorescent cyclodextrins for molecule sensing: Fluorescent properties, NMR characterization, and inclusion phenomena of N-dansylleucine-modified cyclodextrins , 1996 .

[33]  V. Böhmer,et al.  Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[34]  V. Böhmer Calixarene – Makrocyclen mit (fast) unbegrenzten Möglichkeiten , 1995 .

[35]  F. Toda,et al.  A modified cyclodextrin as a guest responsive colour-change indicator , 1992, Nature.

[36]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[37]  J. Lehn,et al.  Perspektiven der Supramolekularen Chemie – von der molekularen Erkennung zur molekularen Informationsverarbeitung und Selbstorganisation , 1990 .

[38]  F. Vögtle,et al.  Selektive molekulare Erkennung von Trihydroxybenzolen , 1989 .

[39]  F. Vögtle,et al.  Selective Molecular Recognition of Trihydroxybenzenes , 1989 .

[40]  Donald J. Cram,et al.  Von molekularen Wirten und Gästen sowie ihren Komplexen: Nobel-Vortrag , 1988 .

[41]  D. Cram,et al.  Host-Guest Chemistry: Complexes between organic compounds simulate the substrate selectivity of enzymes. , 1974, Science.

[42]  Charles J. Pedersen,et al.  Cyclic polyethers and their complexes with metal salts , 1967 .

[43]  D. French The Schardinger dextrins. , 1957, Advances in carbohydrate chemistry.