Oligogenicity, C9orf72 expansion, and variant severity in ALS

[1]  N. Pearce,et al.  The multistep hypothesis of ALS revisited , 2018, Neurology.

[2]  A. Higginbottom,et al.  Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype , 2017, Front. Mol. Neurosci..

[3]  P. Sham,et al.  Burden of rare variants in ALS genes influences survival in familial and sporadic ALS , 2017, Neurobiology of Aging.

[4]  A. Chiò,et al.  Age-related penetrance of the C9orf72 repeat expansion , 2017, Scientific Reports.

[5]  Ashley R. Jones,et al.  A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK , 2017, Brain : a journal of neurology.

[6]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[7]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[8]  G. Rouleau,et al.  Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). , 2015, Trends in genetics : TIG.

[9]  Timothy A. Miller,et al.  Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes , 2015, Annals of neurology.

[10]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[11]  Akash Kumar,et al.  MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing , 2014, Bioinform..

[12]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[13]  Leonard H van den Berg,et al.  Evidence for an oligogenic basis of amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[14]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[15]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[16]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[17]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[18]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[19]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[20]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[21]  R. Mitra,et al.  ALS onset is influenced by the burden of rare variants in known ALS genes , 2015 .