Assessing Ionic Liquids Experimental Data Using Molecular Modeling: [Cnmim][BF4] Case Study

A theoretical tool, the soft-SAFT equation of state combined with the Free-Volume Theory (FVT), is used for the calculation of thermodynamic and transport properties to (1) discriminate among discrepancies observed in different experimental data sets, (2) evaluate its capacity of extrapolation and predictability by comparing to experimental data, and (3) explore phase diagram regions where no experimental measurements are available. The well-known [Cnmim][BF4] ILs family is chosen as a case study. Once a simple but reliable molecular model is proposed for this family, the density of several [Cnmim][BF4] compounds is predicted using correlations of the molecular parameters as a function of the molecular weight. A comparison with different data sets showing discrepancies is addressed from the modeling results. The density of these compounds at high pressures is predicted and compared to the available data. The exploration of the phase diagram region is given by the study of immiscibility gaps in CO2 + [Cnmi...

[1]  K. Gubbins,et al.  Thermodynamics of polyatomic fluid mixtures—I theory , 1978 .

[2]  K. Gubbins,et al.  Equation of State for Lennard-Jones Chains , 1994 .

[3]  A. Maghari,et al.  Prediction of thermodynamic properties of pure ionic liquids through extended SAFT-BACK equation of state , 2013 .

[4]  F. Llovell,et al.  Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons. , 2013, The journal of physical chemistry. B.

[5]  K. R. Harris,et al.  Temperature and Pressure Dependence of the Viscosity of the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate: Viscosity and Density Relationships in Ionic Liquids , 2007 .

[6]  J. Troncoso,et al.  Isobaric Thermal Expansivity for Ionic Liquids with a Common Cation as a Function of Temperature and Pressure , 2010 .

[7]  A. Allal,et al.  A New Free Volume Model for Dynamic Viscosity and Density of Dense Fluids Versus Pressure and Temperature , 2001 .

[8]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[9]  Y. A. Beste,et al.  Extraktivdestillation mit ionischen Flüssigkeiten , 2005 .

[10]  H. Adidharma,et al.  Thermodynamic modeling of aqueous ionic liquid solutions and prediction of methane hydrate dissociation conditions in the presence of ionic liquid , 2013 .

[11]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space , 1951 .

[12]  Walter G Chapman,et al.  Application of Dipolar Chain Theory to the Phase Behavior of Polar Fluids and Mixtures , 2001 .

[13]  F. Llovell,et al.  Modeling complex associating mixtures with [Cn-mim][Tf2N] ionic liquids: predictions from the soft-SAFT equation. , 2011, The journal of physical chemistry. B.

[14]  Lourdes F. Vega,et al.  Water + 1-alkanol systems: Modeling the phase, interface and viscosity properties , 2013 .

[15]  F. Llovell,et al.  Free-volume theory coupled with soft-SAFT for viscosity calculations: comparison with molecular simulation and experimental data. , 2013, The journal of physical chemistry. B.

[16]  Wolfgang Arlt,et al.  Separation of Azeotropic Mixtures Using Hyperbranched Polymers or Ionic Liquids , 2004 .

[17]  M. M. Piñeiro,et al.  Behavior of the Environmentally Compatible Absorbent 1-Butyl-3-methylimidazolium Tetrafluoroborate with 2,2,2-Trifluoroethanol: Experimental Densities at High Pressures and Modeling of PVT and Phase Equilibria Behavior with PC-SAFT EoS , 2011 .

[18]  Xiangping Zhang,et al.  Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids , 2006 .

[19]  Lourdes F. Vega,et al.  Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State , 1998 .

[20]  J. Andreu,et al.  Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives , 2010 .

[21]  J. Hallett,et al.  New experimental density data and soft-SAFT models of alkylimidazolium ([C(n)C₁im]⁺) chloride (Cl⁻), methylsulfate ([MeSO₄]⁻), and dimethylphosphate ([Me₂PO₄]⁻) based ionic liquids. , 2014, The journal of physical chemistry. B.

[22]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[23]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[24]  Jacobo Troncoso,et al.  Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry , 2007 .

[25]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[26]  Seda Keskin,et al.  A review of ionic liquids towards supercritical fluid applications , 2007 .

[27]  Aaron M. Scurto,et al.  Viscosity of Imidazolium-Based Ionic Liquids at Elevated Pressures: Cation and Anion Effects , 2008 .

[28]  J. Troncoso,et al.  Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters , 2010 .

[29]  Josep C. Pàmies,et al.  Phase equilibria of ethylene glycol oligomers and their mixtures , 2005 .

[30]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[31]  I. Polishuk Modeling of Viscosities in Extended Pressure Range Using SAFT + Cubic EoS and Modified Yarranton–Satyro Correlation , 2012 .

[32]  Jianji Wang,et al.  Solubilities of CO2, H2, N2 and O2 in ionic liquid 1-n-butyl-3-methylimidazolium heptafluorobutyrate , 2013 .

[33]  R. Rogers,et al.  Liquid mixtures of ionic liquids and polymers as solvent systems , 2010 .

[34]  J. Chen,et al.  Density and Viscosity Data for Mixtures of Ionic Liquids with a Common Anion , 2014 .

[35]  Sona Raeissi,et al.  Modeling gas solubility in ionic liquids with the SAFT-γ group contribution method , 2012 .

[36]  R. A. Aziz,et al.  Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard‐Jones (12–6) Potential , 1972 .

[37]  J. Coutinho,et al.  Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS , 2014 .

[38]  L. Vega,et al.  Capturing the Solubility Behavior of CO2 in Ionic Liquids by a Simple Model , 2007 .

[39]  J. Rasaiah,et al.  Thermodynamic perturbation theory for simple polar fluids. II , 1972 .

[40]  Elham Pashaei,et al.  Thermophysical properties of alkyl-imidazolium based ionic liquids through the heterosegmented SAFT-BACK equation of state , 2014 .

[41]  J. Coutinho,et al.  High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate , 2013 .

[42]  I. Marrucho,et al.  High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids , 2007 .

[43]  C. Ghotbi,et al.  Thermodynamic modeling of hydrogen sulfide solubility in ionic liquids using modified SAFT-VR and PC , 2011 .

[44]  Wolfgang Arlt,et al.  Influence of Ionic Liquids on the Phase Behavior of Aqueous Azeotropic Systems , 2004 .

[45]  J. Troncoso,et al.  Excess properties for binary systems ionic liquid + ethanol : Experimental results and theoretical description using the ERAS model , 2008 .

[46]  E. Maginn,et al.  Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[47]  H. Gores,et al.  Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot † , 2010 .

[48]  Hajime Miyashiro,et al.  Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids , 2012 .

[49]  J. Valderrama,et al.  Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids , 2007 .

[50]  G. Voth,et al.  On the Structure and Dynamics of Ionic Liquids , 2004 .

[51]  J. Troncoso,et al.  Unusual Behavior of the Thermodynamic Response Functions of Ionic Liquids , 2010 .

[52]  K. R. Harris,et al.  Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Methyl-3-octylimidazolium Hexafluorophosphate and 1-Methyl-3-octylimidazolium Tetrafluoroborate , 2006 .

[53]  D. Macfarlane,et al.  On the components of the dielectric constants of ionic liquids: ionic polarization? , 2009, Physical chemistry chemical physics : PCCP.

[54]  J. Coutinho,et al.  Modeling the [NTf2] pyridinium ionic liquids family and their mixtures with the soft statistical associating fluid theory equation of state. , 2012, The journal of physical chemistry. B.

[55]  R. Smith,et al.  High-Pressure Densities of 1-Alkyl-3-methylimidazolium Hexafluorophosphates and 1-Alkyl-3-methylimidazolium Tetrafluoroborates at Temperatures from (313 to 473) K and at Pressures up to 200 MPa , 2009 .

[56]  G. Sadowski,et al.  Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components , 2014 .

[57]  I. Polishuk,et al.  Modeling Viscosities of Pure Compounds and Their Binary Mixtures Using the Modified Yarranton–Satyro Correlation and Free Volume Theory Coupled with SAFT+Cubic EoS , 2014 .

[58]  J. Troncoso,et al.  Viscosities for Ionic Liquid Binary Mixtures with a Common Ion , 2008 .

[59]  K. E. Starling,et al.  Generalized multiparameter correlation for nonpolar and polar fluid transport properties , 1988 .

[60]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[61]  A. Allal,et al.  Free-volume viscosity model for fluids in the dense and gaseous states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  F. Llovell,et al.  Modeling the absorption of weak electrolytes and acid gases with ionic liquids using the soft-SAFT approach. , 2012, The journal of physical chemistry. B.

[63]  T. Lafitte,et al.  On the isobaric thermal expansivity of liquids. , 2011, The Journal of chemical physics.

[64]  Jie Wei,et al.  Density, Surface Tension, and Refractive Index of Ionic Liquids Homologue of 1-Alkyl-3-methylimidazolium Tetrafluoroborate [Cnmim][BF4] (n = 2,3,4,5,6) , 2012 .

[65]  M. Ribeiro,et al.  Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. , 2005, The Journal of chemical physics.

[66]  K. Seddon,et al.  Viscosity and Density of 1-Alkyl-3-methylimidazolium Ionic Liquids , 2002 .

[67]  Sheng Dai,et al.  Examination of the Potential of Ionic Liquids for Gas Separations , 2005 .

[68]  E. Maginn,et al.  Molecular simulation of ionic liquids: current status and future opportunities , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[70]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[71]  F. Mutelet,et al.  Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT equation of state. , 2012, The journal of physical chemistry. B.

[72]  Lourdes F. Vega,et al.  THERMODYNAMIC BEHAVIOUR OF HOMONUCLEAR AND HETERONUCLEAR LENNARD-JONES CHAINS WITH ASSOCIATION SITES FROM SIMULATION AND THEORY , 1997 .

[73]  A. Yokozeki,et al.  Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4] , 2005 .

[74]  Lourdes F. Vega,et al.  Thermodynamic Modeling of Imidazolium-Based Ionic Liquids with the [PF6]− Anion for Separation Purposes , 2012 .

[75]  Sugata P. Tan,et al.  Generalized Procedure for Estimating the Fractions of Nonbonded Associating Molecules and Their Derivatives in Thermodynamic Perturbation Theory , 2004 .

[76]  B. Mokhtarani,et al.  Densities, Refractive Indices, and Viscosities of the Ionic Liquids 1-Methyl-3-octylimidazolium Tetrafluoroborate and 1-Methyl-3-butylimidazolium Perchlorate and Their Binary Mixtures with Ethanol at Several Temperatures , 2008 .

[77]  I. Marrucho,et al.  PρT Measurements of Imidazolium-Based Ionic Liquids , 2007 .