System Identification Using Intelligent Algorithms

This research presents an investigation into the development of system identification using intelligent algorithms. A simulation platform of a flexible beam vibration using finite difference (FD) method is used to demonstrate the capabilities of the identification algorithms. A number of approaches and algorithms for system identifications are explored and evaluated. These identification approaches using (a) traditional Recursive Least Square (RLS) filter, (b) Genetic Algorithms (GAs) (c) Adaptive Neuro_Fuzzy Inference System (ANFIS) model (d) General Regression Neural Network (GRNN) and (e)Bees Algorithm (BA). The above algorithms are used to estimate a linear discrete second order model for the flexible beam vibration. The model is implemented, tested and validated to evaluate and demonstrate the merits of the algorithms for system identification. Finally, a comparative performance of error convergence of the algorithms is presented and discussed.

[1]  Wattana Kanbuaa,et al.  Ocean Wave Forecasting in the Gulf of Thailand during Typhoon Linda 1997 : WAM and Neural Network Approaches , 2005 .

[2]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[3]  M. O. Tokhi,et al.  Parallel computing for real-time signal processing and control , 2003 .

[4]  Hungu Lee,et al.  On-line suboptimal midcourse guidance using neural networks , 1996, Proceedings of the 35th SICE Annual Conference. International Session Papers.

[5]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[6]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[7]  Han-Fu Chen,et al.  Identification and adaptive control for systems with unknown orders, delay, and coefficients , 1990 .

[8]  S. Kanmani,et al.  Object oriented software quality prediction using general regression neural networks , 2004, SOEN.

[9]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[10]  M O Tokhi,et al.  Self-Tuning Active Vibration Control in Flexible Beam Structures , 1994 .

[11]  Keshav Dahal,et al.  Evolutionary optimisation approach for missile guidance algorithms to achieve accurate interception of manoeuvring targets in 3D , 2006 .

[12]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[13]  Lotfi A. Zadeh,et al.  Fuzzy Logic Toolbox User''''s Guide , 1995 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[16]  Guy Albert Dumont,et al.  System identification and control using genetic algorithms , 1992, IEEE Trans. Syst. Man Cybern..

[17]  Kevin M. Passino,et al.  Genetic adaptive identification and control , 1999 .

[18]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[19]  M. O. Tokhi,et al.  Evolutionary adaptive active vibration control , 1997 .

[20]  Philip D. Wasserman,et al.  Advanced methods in neural computing , 1993, VNR computer library.