Controlling magnetism in 2D CrI3 by electrostatic doping

The atomic thickness of two-dimensional materials provides a unique opportunity to control their electrical1 and optical2 properties as well as to drive the electronic phase transitions3 by electrostatic doping. The discovery of two-dimensional magnetic materials4–10 has opened up the prospect of the electrical control of magnetism and the realization of new functional devices11. A recent experiment based on the linear magneto-electric effect has demonstrated control of the magnetic order in bilayer CrI3 by electric fields12. However, this approach is limited to non-centrosymmetric materials11,13–16 magnetically biased near the antiferromagnet–ferromagnet transition. Here, we demonstrate control of the magnetic properties of both monolayer and bilayer CrI3 by electrostatic doping using CrI3–graphene vertical heterostructures. In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened/weakened magnetic order with hole/electron doping. Remarkably, in bilayer CrI3, the electron doping above ~2.5 × 1013 cm−2 induces a transition from an antiferromagnetic to a ferromagnetic ground state in the absence of a magnetic field. The result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayer CrI3 by small gate voltages.Electrostatic doping in vertical van der Waals CrI3–graphene heterostructures provides means to control the magnetic properties of monolayer and bilayer CrI3.

[1]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[2]  A. Marty,et al.  Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets , 2007, Science.

[3]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[4]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[5]  F. Pan,et al.  Recent progress in voltage control of magnetism: Materials, mechanisms, and performance , 2017, 1702.03730.

[6]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[7]  H. Ohno,et al.  Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor , 2003, Science.

[8]  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[9]  V. Eyert,et al.  Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Kostya S. Novoselov,et al.  Graphene: Materials in the flatland , 2011 .

[11]  J. Shan,et al.  Electrical Tuning of Interlayer Exciton Gases in WSe2 Bilayers. , 2017, Nano letters.

[12]  S. Banerjee,et al.  Shubnikov-de Haas Oscillations of High-Mobility Holes in Monolayer and Bilayer WSe_{2}: Landau Level Degeneracy, Effective Mass, and Negative Compressibility. , 2016, Physical review letters.

[13]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[14]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[15]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[16]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[17]  Tsutomu Nojima,et al.  Highly crystalline 2D superconductors , 2017 .

[18]  M. Dunlavy,et al.  MAGNETIC SUSCEPTIBILITY MEASUREMENTS OF ULTRATHIN FILMS USING THE SURFACE MAGNETO-OPTIC KERR EFFECT : OPTIMIZATION OF THE SIGNAL-TO-NOISE RATIO , 1997 .

[19]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[20]  Michael A. McGuire,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[21]  M D Rossell,et al.  Reversible electric control of exchange bias in a multiferroic field-effect device. , 2010, Nature materials.

[22]  D. Mandrus,et al.  Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3 , 2017, Journal of Physics and Chemistry of Solids.

[23]  Enrico Gratton,et al.  Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain. , 2003, Optics express.

[24]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[25]  Hideo Ohno,et al.  Control of magnetism by electric fields. , 2015, Nature nanotechnology.

[26]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[27]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[28]  S. Blundell Magnetism in Condensed Matter , 2001 .

[29]  J. Fern'andez-Rossier,et al.  On the origin of magnetic anisotropy in two dimensional CrI3 , 2017, 1704.03849.

[30]  Jie Shan,et al.  Electric-field switching of two-dimensional van der Waals magnets , 2018, Nature Materials.

[31]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[32]  Huiwen Ji,et al.  Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal , 2016, 1604.08745.

[33]  M. McGuire Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides , 2017, 1704.08225.

[34]  Qiang Sun,et al.  Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. , 2016, Physical chemistry chemical physics : PCCP.

[35]  C. Binek,et al.  Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics , 2010, 1004.3763.

[36]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[37]  C. Binek,et al.  Robust isothermal electric control of exchange bias at room temperature. , 2010, Nature materials.

[38]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[39]  Qihua Xiong,et al.  Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.