Anomalous dimensions of higher spin currents in large N CFTs

[1]  S. Rey,et al.  Rainbow vacua of colored higher-spin (A)dS3 gravity , 2016 .

[2]  S. Rey,et al.  Massless and massive higher spins from anti-de Sitter space waveguide , 2016, 1605.06526.

[3]  Kallol Sen,et al.  More on analytic bootstrap for O(N) models , 2016, 1602.04928.

[4]  I. Klebanov,et al.  On C J and C T in the Gross–Neveu and O(N) models , 2016, 1601.07198.

[5]  Yasuaki Hikida Masses of higher spin fields on AdS 4 and conformal perturbation theory , 2016, 1601.01784.

[6]  S. Giombi,et al.  Anomalous dimensions in CFT with weakly broken higher spin symmetry , 2016, 1601.01310.

[7]  A. Sommerfeld,et al.  On (Un)Broken Higher-Spin Symmetry in Vector Models , 2015, 1512.05994.

[8]  David Poland,et al.  Non-abelian binding energies from the lightcone bootstrap , 2015, 1510.07044.

[9]  T. Creutzig,et al.  Higgs phenomenon for higher spin fields on AdS3 , 2015, 1506.04465.

[10]  C. Peng,et al.  Higgsing the stringy higher spin symmetry , 2015, 1506.02045.

[11]  Yasuaki Hikida,et al.  Marginal deformations and the Higgs phenomenon in higher spin AdS3 holography , 2015, 1503.03870.

[12]  R. Gopakumar,et al.  Higher spins & strings , 2014, 1406.6103.

[13]  T. Creutzig,et al.  Higher spin AdS3 holography with extended supersymmetry , 2014, 1406.1521.

[14]  R. Leigh,et al.  Singleton deformation of higher-spin theory and the phase structure of the three-dimensional O(N) vector model , 2012, 1212.4421.

[15]  J. Maldacena,et al.  Constraining conformal field theories with a slightly broken higher spin symmetry , 2012, 1204.3882.

[16]  R. Gopakumar,et al.  Large N = 4 holography , 2013 .

[17]  X. Yin,et al.  ABJ triality: from higher spin fields to strings , 2012, 1207.4485.

[18]  S. Wadia,et al.  Chern–Simons theory with vector fermion matter , 2011, 1110.4386.

[19]  Guy Gur-Ari,et al.  d = 3 bosonic vector models coupled to Chern-Simons gauge theories , 2011, 1110.4382.

[20]  X. Yin,et al.  On Higher Spin Gauge Theory and the Critical O(N) Model , 2011, 1105.4011.

[21]  O. Aharony,et al.  Fractional M2-branes , 2008, 0807.4924.

[22]  J. Maldacena,et al.  N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.

[23]  H. Dorn,et al.  On the AdS higher spin / O(N) vector model correspondence: degeneracy of the holographic image , 2006, hep-th/0603084.

[24]  Thomas Hartman,et al.  Double-Trace Deformations , Mixed Boundary Conditions and Functional Determinants in AdS / CFT , 2006 .

[25]  E. Sezgin,et al.  Holography in 4D (super) higher spin theories and a test via cubic scalar couplings , 2003, hep-th/0305040.

[26]  M. Vasiliev Nonlinear equations for symmetric massless higher spin fields in (A)dSd , 2003 .

[27]  J. Zinn-Justin,et al.  Quantum field theory in the large N limit: a review , 2003, hep-th/0306133.

[28]  R. Leigh,et al.  Holography of the N=1 higher spin theory on AdS(4) , 2003, hep-th/0304217.

[29]  L. Girardello,et al.  3D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS , 2002, hep-th/0212181.

[30]  A. Polyakov,et al.  AdS dual of the critical O(N) vector model , 2002, hep-th/0210114.

[31]  M. Vasiliev Higher Spin Gauge Theories: Star-Product and AdS Space , 1999, hep-th/9910096.

[32]  D. Anselmi Higher-spin current multiplets in operator-product expansions , 1999, hep-th/9906167.

[33]  A. Manashov,et al.  A simple scheme for the calculation of the anomalous dimensions of composite operators in the 1/N expansion , 1997, hep-th/9710015.

[34]  A. N. Vasil'ev,et al.  Proof of the absence of multiplicative renormalizability of the Gross-Neveu model in the dimensional regularizationd=2+2ɛ , 1997 .

[35]  A. N. Vasil'ev,et al.  On the equivalence of renormalizations in standard and dimensional regularizations of 2D four-fermion interactions , 1996 .

[36]  W. Rühl,et al.  The critical O(N) σ-model at dimensions 2 < d < 4: Fusion coefficients and anomalous dimensions , 1993 .

[37]  N. Kivel,et al.  On Calculation of 1/n Expansions of Critical Exponents in the Gross-Neveu Model with the Conformal Technique , 1993, hep-th/9302034.

[38]  J. Gracey Computation of the three-loop β-function of the O(N) Gross-Neveu model in minimal subtraction , 1991 .

[39]  J. Gracey CALCULATION OF EXPONENT η TO O(1/N2) IN THE O(N) GROSS NEVEU MODEL , 1991 .

[40]  J. Gracey,et al.  Three-loop calculations in the O(N) gross-neveu model , 1990 .

[41]  D. Gross,et al.  High-energy symmetries of string theory. , 1988, Physical review letters.

[42]  A. N. Vasil'ev,et al.  Analog of dimensional regularization for calculation of the renormalization-group functions in the 1/n expansion for arbitrary dimension of space , 1983 .

[43]  A. N. Vasil'ev,et al.  1/n Expansion: Calculation of the exponents η andν in the order 1/n2 for arbitrary number of dimensions , 1981 .

[44]  A. N. Vasil'ev,et al.  Simple method of calculating the critical indices in the 1/n expansion , 1981 .

[45]  D. Popović,et al.  Anomalous Dimensions of Composite Operators in the Gross-Neveu Model in 2+ε Dimensions , 1977 .

[46]  David J. Gross,et al.  Dynamical symmetry breaking in asymptotically free field theories , 1974 .