Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors

In this paper, we propose a novel symmetrical EEG/fMRI fusion method which combines EEG and fMRI by means of a common generative model. We use a total variation (TV) prior to model the spatial distribution of the cortical current responses and hemodynamic response functions, and utilize spatially adaptive temporal priors to model their temporal shapes. The spatial adaptivity of the prior model allows for adaptation to the local characteristics of the estimated responses and leads to high estimation performance for the cortical current distribution and the hemodynamic response functions. We utilize a Bayesian formulation with a variational Bayesian framework and obtain a fully automatic fusion algorithm. Simulations with synthetic data and experiments with real data from a multimodal study on face perception demonstrate the performance of the proposed method.

[1]  R. Keriven,et al.  Imaging Methods for MEG/EEG Inverse Problem , 2005 .

[2]  T. Jaakkola,et al.  Improving the Mean Field Approximation Via the Use of Mixture Distributions , 1999, Learning in Graphical Models.

[3]  Karl J. Friston,et al.  An empirical Bayesian solution to the source reconstruction problem in EEG , 2005, NeuroImage.

[4]  Jérémie Mattout,et al.  Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework , 2007, NeuroImage.

[5]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[6]  Grit Thürmer,et al.  Computing Vertex Normals from Polygonal Facets , 1998, J. Graphics, GPU, & Game Tools.

[7]  Bin He,et al.  fMRI–EEG integrated cortical source imaging by use of time-variant spatial constraints , 2008, NeuroImage.

[8]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[9]  Sergey M. Plis,et al.  Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC , 2008, NeuroImage.

[10]  J. Frahm,et al.  Dynamic MR imaging of human brain oxygenation during rest and photic stimulation , 1992, Journal of magnetic resonance imaging : JMRI.

[11]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[12]  R. Henson,et al.  Electrophysiological and haemodynamic correlates of face perception, recognition and priming. , 2003, Cerebral cortex.

[13]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[14]  Julia P. Owen,et al.  Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG , 2010, NeuroImage.

[15]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[16]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[17]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[18]  Greenblatt Ijbem,et al.  Nonlinear Analysis of Multimodal Dynamic Brain Imaging Data , 2001 .

[19]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Julius P. A. Dewald,et al.  Evaluation of different cortical source localization methods using simulated and experimental EEG data , 2005, NeuroImage.

[21]  A. Friederici,et al.  N400-like Semantic Incongruity Effect in 19-Month-Olds: Processing Known Words in Picture Contexts , 2004, Journal of Cognitive Neuroscience.

[22]  R. Jackson Inequalities , 2007, Algebra for Parents.

[23]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[24]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[25]  M. Scherg,et al.  Evoked dipole source potentials of the human auditory cortex. , 1986, Electroencephalography and clinical neurophysiology.

[26]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[27]  David P. Wipf,et al.  Bayesian methods for finding sparse representations , 2006 .

[28]  Karl J. Friston,et al.  A Parametric Empirical Bayesian framework for fMRI‐constrained MEG/EEG source reconstruction , 2010, Human brain mapping.

[29]  Helen J. Neville,et al.  Selective auditory attention in 3- to 5-year-old children: An event-related potential study , 2006, Neuropsychologia.

[30]  Seppo P. Ahlfors,et al.  Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates , 2004, NeuroImage.

[31]  S. Hillyard,et al.  Combining steady‐state visual evoked potentials and f MRI to localize brain activity during selective attention , 1997, Human brain mapping.

[32]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[33]  Andreas Kleinschmidt,et al.  Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging , 2008, NeuroImage.

[34]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[35]  C C Wood,et al.  Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[36]  Jérémie Mattout,et al.  Data-driven parceling and entropic inference in MEG , 2006, NeuroImage.

[37]  Nelson J. Trujillo-Barreto,et al.  Bayesian M/EEG source reconstruction with spatio-temporal priors , 2008, NeuroImage.

[38]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[39]  J.-M. Lina,et al.  Assessing the relevance of fMRI-based prior in the EEG inverse problem: a bayesian model comparison approach , 2005, IEEE Transactions on Signal Processing.

[40]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[41]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[42]  Polina Golland,et al.  Multimodal functional imaging using fMRI-Informed Regional EEG/MEG Source Estimation , 2009, NeuroImage.

[43]  Jean Gotman,et al.  Anatomically informed interpolation of fMRI data on the cortical surface , 2006, NeuroImage.

[44]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[45]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[46]  Karl J. Friston,et al.  Bayesian estimation of evoked and induced responses , 2006, Human brain mapping.

[47]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[48]  Aggelos K. Katsaggelos,et al.  Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation , 2008, IEEE Transactions on Image Processing.

[49]  Stephanie Ortigue,et al.  Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization , 2009, NeuroImage.

[50]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[51]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[52]  Karl J. Friston,et al.  Population-level inferences for distributed MEG source localization under multiple constraints: Application to face-evoked fields , 2007, NeuroImage.

[53]  Jean-Baptiste Poline,et al.  Bayesian estimation of the hemodynamic response function in functional MRI , 2002 .

[54]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.