Microstructure and mechanical properties of C/SiC-niobium alloy (C103) joint brazed with TiCuAg alloy for aerospace applications

[1]  J. Qi,et al.  Negative thermal expansion of Sc2W3O12 interlayer with three-dimensional interpenetrating network structure for brazing C/SiC composites and GH3536 , 2022, Carbon.

[2]  J. Qi,et al.  Design CuZr alloy to control Ti diffusion and reaction layer thickness in C/C-TC4 joins , 2022, Materials Characterization.

[3]  Q. Ma,et al.  The use of a carbonized phenolic formaldehyde resin coated Ni foam as an interlayer to increase the high-temperature strength of C/C composite-Nb brazed joints , 2021, Ceramics International.

[4]  Xingke Zhao,et al.  Reaction-composite diffusion brazing of C-SiC composite and Ni-based superalloy using mixed (Cu-Ti)+C powder as an interlayer , 2021, Journal of Materials Processing Technology.

[5]  Priyanka Agrawal,et al.  Mechanical properties and microstructural characteristics of additively manufactured C103 niobium alloy , 2021, Materials Science and Engineering: A.

[6]  J. Qi,et al.  Root-like C/SiC surface structure fabricated by the thermal and electrochemical corrosion for brazing to Nb , 2021 .

[7]  Yonglei Wang,et al.  Joining of Cf/SiC and stainless steel with (Cu–Ti)+C composite filler to obtain a stress-relieved and high-temperature resistant joint , 2021 .

[8]  Anurag Kamal,et al.  Development of C/SiC Fasteners for High-Temperature Applications , 2021 .

[9]  E. Sato,et al.  Microstructural evolution and mechanical characterization of Nb-interlayer-inserted Ti–6Al–4V/Si3N4 joints brazed with AuNiTi filler , 2020 .

[10]  J. Qi,et al.  C/SiC composite-Ti6Al4V joints brazed with negative thermal expansion ZrP2WO12 nanoparticle reinforced AgCu alloy , 2019, Journal of the European Ceramic Society.

[11]  Yiguang Wang,et al.  Improved shear strength of SiC-coated 3D C/SiC composite joints with a tailored Ti-Si-C interlayer , 2019, Journal of the European Ceramic Society.

[12]  Bing Zhang,et al.  Joining of Cf/SiC Ceramic Matrix Composites: A Review , 2018, Advances in Materials Science and Engineering.

[13]  Lixia Zhang,et al.  Interfacial microstructure and mechanical properties of the vacuum brazed C/SiC composite and Nb joints , 2017 .

[14]  L. X. Zhang,et al.  Microstructure evolution and mechanical property of ZrC-SiC/Ti6Al4V joints brazed using Ti-15Cu-15Ni filler , 2017 .

[15]  Xingke Zhao,et al.  Joining of Cf/SiC composite to Ti-6Al-4V with (Ti-Zr-Cu-Ni)+Ti filler based on in-situ alloying concept , 2017 .

[16]  F. Huang,et al.  Thickness-dependent phase evolution and bonding strength of SiC ceramics joints with active Ti interlayer , 2017 .

[17]  Chunfeng Liu,et al.  Effect of brazing parameters on microstructure and mechanical properties of Cf/SiC and Nb-1Zr joints brazed with Ti-Co-Nb filler alloy , 2017 .

[18]  Xiaoguo Song,et al.  Effect of processing parameters on the formation of Cf/LAS composites/AgCuTi/TC4 brazed joint , 2016 .

[19]  M. Singh,et al.  Diffusion bonding of SiC fiber-bonded ceramics using Ti/Mo and Ti/Cu interlayers , 2015 .

[20]  Xingke Zhao,et al.  Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti-Zr-Be , 2014 .

[21]  Xingke Zhao,et al.  Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti–Zr–Cu–Ni)+W composite filler materials , 2014 .

[22]  K. Mergia,et al.  An Innovative Joint Structure for Brazing Cf/SiC Composite to Titanium Alloy , 2014, Journal of Materials Engineering and Performance.

[23]  L. X. Zhang,et al.  Interfacial microstructure and mechanical properties of TiAl and C/SiC joint brazed with TiH2–Ni–B brazing powder , 2013 .

[24]  T. Knych,et al.  Fabrication, Properties and Microstructures of High Strength and High Conductivity Copper-Silver Wires , 2012 .

[25]  M. Singh,et al.  Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag Cu Ti alloy , 2012 .

[26]  L. X. Zhang,et al.  Microstructural evolution and mechanical properties of the joint of TiAl alloys and C/SiC composites vacuum brazed with Ag–Cu filler metal , 2011 .

[27]  L. X. Zhang,et al.  Brazing C/SiC composites and Nb with TiNiNb active filler metal , 2011 .

[28]  André I. Khuri,et al.  Response surface methodology , 2010 .

[29]  Xue-jian Liu,et al.  Joining of sintered silicon carbide using ternary Ag–Cu–Ti active brazing alloy , 2009 .

[30]  M. Singh,et al.  Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers , 2008 .

[31]  Jihua Huang,et al.  Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers , 2007 .

[32]  Jinglong Li,et al.  Joining of 3D C/SiC composites to niobium alloy , 2006 .

[33]  H. Hu,et al.  Processing and properties of 2D-Cf/SiC composites incorporating SiC fillers , 2005 .

[34]  Y. Gogotsi,et al.  Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide , 2005 .

[35]  Z. Rak A Process for Cf/SiC Composites Using Liquid Polymer Infiltration , 2004 .

[36]  Stephan Schmidt,et al.  Advanced ceramic matrix composite materials for current and future propulsion technology applications , 2004 .

[37]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[38]  Changguo Liu,et al.  A long duration and high reliability liquid apogee engine for satellites , 2003 .

[39]  Jong-Ho Kim,et al.  Finite-element analysis and X-ray measurement of the residual stresses of ceramic/metal joints , 1997 .

[40]  B. Reed,et al.  Advanced HfC-TaC Oxidation Resistant Composite Rocket Thruster , 1996 .

[41]  D. Laughlin,et al.  Phase diagrams of binary copper alloys , 1993 .

[42]  A. Evans,et al.  Residual stress cracking of metal/ceramic bonds , 1991 .

[43]  J. Davim Ceramic matrix materials , 2016 .

[44]  V. S. Zhuravlev,et al.  Liquid metal wettability and advanced ceramic brazing , 2008 .

[45]  W. Krenkel Carbon Fibre Reinforced Silicon Carbide Composites (C/SiC, C/C-SiC) , 2005 .

[46]  D. Sciti,et al.  Bonding of zirconia to super alloy with the active brazing technique , 2001 .

[47]  Norman A. Fleck,et al.  Crack path selection in a brittle adhesive layer , 1991 .