Randomized Incremental Construction of Simple Abstract Voronoi Diagrams in 3-space

Abstract We introduce the simple abstract Voronoi diagram in 3-space as an abstraction of the usual Voronoi diagram. We show that the 3-dimensional simple abstract Voronoi diagram of n sites can be computed in O(n2) expected time using O(n2) expected space by a randomized algorithm. The algorithm is based on the randomized incremental construction technique of Clarkson and Shor (1989). We apply the algorithm to some concrete types of such diagrams: power diagrams, diagrams under ellipsoid convex distance functions, and diagrams under the Hausdorff distance for sites that are parallel segments all having the same length.

[1]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[2]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[3]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[4]  Ngoc-Minh Lê,et al.  On Voronoi Diagrams in the L_p-Metric in Higher Dimensions , 1994, STACS.

[5]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[6]  Rolf Klein,et al.  Convex distance functions in 3-space are different , 1993, SCG '93.

[7]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[8]  Kokichi Sugihara,et al.  Voronoi diagrams in a river , 1992, Int. J. Comput. Geom. Appl..

[9]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[10]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[11]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[12]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[13]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[14]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[15]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[16]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.