Frequency-Dynamic Range-Power

In analog circuits, a fundamental trade-off exists between power consumption, signal-to-noise ratio and available bandwidth, as expressed by equation (10.1). The absolute minimum value2 of factor K that quantifies this trade-off is 8. However, independently of any process limitation, this minimum may be larger, depending on the function that is considered and on the approach used for its implementation: signal swing smaller than the supply voltage, several poles and/or high-Q poles in active filters, current or voltage amplification. A severe increase of K may be caused by the need to achieve linearity in spite of the nonlinear transfer characteristics of active devices. In practice, K is further increased by process-dependent limitations including parasitic capacitors, additional noise sources with respect to fundamental thermal or shot noise, mismatch of components and charge injection by switches. Lowering the supply voltage below a few volts usually causes an increase of K, but it may help to reduce it in cases where the signal swing is limited.

[1]  Rinaldo Castello,et al.  Performance limitations in switched-capacitor filters , 1985 .

[2]  Y. Tsividis,et al.  Noise in Gm-C filters , 1998 .

[3]  Willy Sansen,et al.  Distortion in elementary transistor circuits , 1999 .

[4]  M.A.T. Sanduleanu Power, accuracy and noise aspects in CMOS mixed-signal design , 1999 .

[5]  Robert W. Adams,et al.  Filtering in the Log Domain , 1979 .

[6]  A. Elshabini-Riad,et al.  Dynamic range of high-Q OTA-C and enhanced-Q LC RF bandpass filters , 1994, Proceedings of 1994 37th Midwest Symposium on Circuits and Systems.

[7]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[8]  D. R. Frey Log domain filtering for RF applications , 1996 .

[9]  Asad A. Abidi Noise in active resonators and the available dynamic range , 1992 .

[10]  Douglas R. Frey A general class of current mode filters , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[11]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[12]  Eric A. Vittoz,et al.  Future of analog in the VLSI environment , 1990, IEEE International Symposium on Circuits and Systems.

[13]  Michiel Steyaert,et al.  Analog VLSI Integration of Massive Parallel Signal Processing Systems , 1996 .

[14]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[15]  Eric A. Vittoz,et al.  Micropower Techniques , 1994 .

[16]  Bram Nauta,et al.  Micro-Power Analog-Filter Design , 1995 .

[17]  Anne-Johan Annema,et al.  Analog circuit performance and process scaling , 1999 .

[18]  Christofer Toumazou,et al.  Micropower log-domain filter for electronic cochlea , 1994 .

[19]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[20]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[21]  D. Python,et al.  A micropower class AB CMOS log-domain filter for DECT applications , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[22]  E. Seevinck,et al.  Companding current-mode integrator: A new circuit principle for continuous-time monolithic filters , 1990 .

[23]  Christian Enz,et al.  1-V Log-Domain Filters , 1998 .

[24]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[25]  Yannis Tsividis,et al.  Companding in signal processing , 1990 .

[26]  R. C. Mathes,et al.  The compandor — An aid against static in radio telephony , 1934 .

[27]  B.J. Hosticka,et al.  Performance comparison of analog and digital circuits , 1985, Proceedings of the IEEE.

[28]  Michiel Steyaert,et al.  Implications of Transistor Mismatch on Analog Circuit Design and System Performance , 1997 .

[29]  Wouter A. Serdijn,et al.  Nonlinear analysis of noise in static and dynamic translinear circuits , 1999 .

[30]  Yannis Tsividis Minimising power dissipation in analogue signal processors through syllabic companding , 1999 .

[31]  G. Efthivoulidis,et al.  General results for resistive noise in active RC and MOSFET-C filters , 1995 .

[32]  Eric A. Vittoz,et al.  Dynamic analog techniques , 1994 .

[33]  Yannis Tsividis,et al.  Externally linear, time-invariant systems and their application to companding signal processors , 1997 .

[34]  C. Enz,et al.  A 1.2 V BiCMOS class AB log-domain filter , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[35]  Willy Sansen,et al.  Analog circuit design : low-power low-voltage, integrated filters, and smart power , 1995 .

[36]  G. Groenewold Optimal dynamic range integrators , 1992 .

[37]  Gabor C. Temes Simple formula for estimation of minimum clock-feedthrough error voltage , 1986 .

[38]  Eric A. Vittoz,et al.  Charge injection in analog MOS switches , 1987 .

[39]  Nagendra Krishnapura,et al.  Simplified technique for syllabic companding in log-domain filters , 2000 .

[40]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[41]  E. M. Blumenkrantz The analog floating point technique , 1995, 1995 IEEE Symposium on Low Power Electronics. Digest of Technical Papers.

[42]  Eric A. Vittoz Low-Power Low-Voltage Limitations and Prospects in Analog Design , 1995 .

[43]  Yannis Tsividis,et al.  Syllabically companding log domain filter using dynamic biasing , 1997 .