Characterization of two peptides isolated from the venom of social wasp Chartergellus communis (Hymenoptera: Vespidae): Influence of multiple alanine residues and C-terminal amidation on biological effects
暂无分享,去创建一个
L. Possani | M. C. Rodrigues | D. M. Ribeiro | E. F. Schwartz | M. Mortari | Fernando Zamudio-Zuñiga | L. C. Camargo | K. Lopes | G. Campos | A. C. B. Souza | Beatriz Vasconcelos Ibituruna | Ana Carolina Martins Magalhães | L. F. D. Rocha | Alessa Bembom Garcia | M. C. Costa | Manuel Humberto Mera López | Luciana Marangni Nolli | Dágon Manoel Ribeiro
[1] Thiago Silva,et al. Hymenoptera , 2019 .
[2] T. L. Sampaio,et al. The acute inflammatory response induced in mice by the venom of the giant ant Dinoponera quadriceps involves macrophage and interleukin-1β. , 2016, Toxicon : official journal of the International Society on Toxinology.
[3] O. Franco,et al. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2. , 2016, Biochimica et biophysica acta.
[4] Suzana M. Ribeiro,et al. A polyalanine peptide derived from polar fish with anti-infectious activities , 2016, Scientific Reports.
[5] J. Seo,et al. Comparative functional venomics of social hornets Vespa crabro and Vespa analis , 2015 .
[6] Yang Zhang,et al. Protein Structure and Function Prediction Using I‐TASSER , 2015, Current protocols in bioinformatics.
[7] M. Jamur,et al. Inflammatory mediators involved in the paw edema and hyperalgesia induced by Batroxase, a metalloproteinase isolated from Bothrops atrox snake venom. , 2015, International immunopharmacology.
[8] M. Palma,et al. The effects of the C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems. , 2014, Biochimica et biophysica acta.
[9] Yang Zhang,et al. The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.
[10] Rosana S S Barreto,et al. Borneol, a Bicyclic Monoterpene Alcohol, Reduces Nociceptive Behavior and Inflammatory Response in Mice , 2013, TheScientificWorldJournal.
[11] G. Aryal,et al. Hymenoptera Stings and the Acute Kidney Injury , 2013, EMJ Nephrology.
[12] S. Knuutila,et al. True 3q Chromosomal Amplification in Squamous Cell Lung Carcinoma by FISH and aCGH Molecular Analysis: Impact on Targeted Drugs , 2012, PloS one.
[13] O. Franco,et al. Structural and Functional Characterization of a Multifunctional Alanine-Rich Peptide Analogue from Pleuronectes americanus , 2012, PloS one.
[15] D. Higgins,et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.
[16] R. Zucchi,et al. Morphological Caste Differences in Three Species of the Neotropical Genus Clypearia (Hymenoptera: Polistinae: Epiponini) , 2010 .
[17] Yang Zhang,et al. How significant is a protein structure similarity with TM-score = 0.5? , 2010, Bioinform..
[18] Yang Zhang,et al. I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.
[19] Yibing Huang,et al. Alpha-helical cationic antimicrobial peptides: relationships of structure and function , 2010, Protein & Cell.
[20] M. Palma,et al. Hyperalgesic and edematogenic effects of peptides isolated from the venoms of honeybee (Apis mellifera) and neotropical social wasps (Polybia paulista and Protonectarina sylveirae) , 2010, Amino Acids.
[21] H. Arcuri,et al. Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista , 2009, Peptides.
[22] J. Mogil. Animal models of pain: progress and challenges , 2009, Nature Reviews Neuroscience.
[23] B. Devreese,et al. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. , 2009, Journal of proteomics.
[24] R. Hodges,et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α‐helical cationic antimicrobial peptides , 2009, Advances in experimental medicine and biology.
[25] Yang Zhang,et al. I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.
[26] Hailong Yang,et al. The mastoparanogen from wasp , 2006, Peptides.
[27] Matthew Samore,et al. Identification of antimicrobial peptide regions derived from genomic sequences of phage lysins , 2006, Peptides.
[28] K. FitzGerald,et al. Hymenoptera stings. , 2006, Clinical techniques in small animal practice.
[29] M. Palma,et al. Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). , 2005, Toxicon : official journal of the International Society on Toxinology.
[30] S. Oyama,et al. How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. , 2004, Biochemistry.
[31] K. Wittkowski,et al. Inflammatory Role of Two Venom Components of Yellow Jackets (Vespula vulgaris): A Mast Cell Degranulating Peptide Mastoparan and Phospholipase A1 , 2003, International Archives of Allergy and Immunology.
[32] H. Nagasawa,et al. Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormone , 2002, Peptides.
[33] A. Mor,et al. Structural consequences of carboxyamidation of dermaseptin S3. , 2002, Biochemistry.
[34] F. Knoop,et al. Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). , 2001, Biochimica et biophysica acta.
[35] N. Kawai,et al. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. , 2001, Biochimica et biophysica acta.
[36] A. Tossi,et al. Amphipathic alpha helical antimicrobial peptides. , 2001, European journal of biochemistry.
[37] Alessandro Tossi,et al. Amphipathic, α‐helical antimicrobial peptides , 2000 .
[38] R. Nagaraj,et al. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. , 2009, The journal of peptide research : official journal of the American Peptide Society.
[39] Thomas L. Madden,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.
[40] ROBERT L. JEANNE,et al. Regulation of nest construction behaviour in Polybia occidentalis , 1996, Animal Behaviour.
[41] A. Basbaum,et al. Exaggerated cardiovascular and behavioral nociceptive responses to subcutaneous formalin in the spontaneously hypertensive rat , 1995, Neuroscience Letters.
[42] M. Palma,et al. Isolation and sequence analysis of peptides from the venom of Protonectarina sylveirae (Hymenoptera-Vespidae). , 1993, Natural toxins.
[43] J. J. Moreno,et al. Oedema formation and degranulation of mast cells by phospholipase A2 purified from porcine pancreas and snake venoms. , 1993, Toxicon : official journal of the International Society on Toxinology.
[44] E. Ross,et al. Mapping of the mastoparan-binding site on G proteins. Cross-linking of [125I-Tyr3,Cys11]mastoparan to Go. , 1991, The Journal of biological chemistry.
[45] M. D. de Sousa,et al. Enterolobin, a hemolytic protein from Enterolobium contortisiliquum seeds (Leguminosae--Mimosoideae). Purification and characterization. , 1989, Anais da Academia Brasileira de Ciencias.
[46] R. Snyderman,et al. Mastoparan, a wasp venom peptide, identifies two discrete mechanisms for elevating cytosolic calcium and inositol trisphosphates in human polymorphonuclear leukocytes. , 1989, Journal of immunology.
[47] M. Fujino,et al. Amphiphilic peptides in wasp venom. , 1986, Biopolymers.
[48] T. Nakajima,et al. A new mast cell degranulating peptide homologous to mastoparan in the venom of Japanese hornet (Vespa xanthoptera). , 1979, Chemical & pharmaceutical bulletin.
[49] O. Richards. The social wasps of the Americas excluding the Vespinae , 1978 .
[50] S. Massry,et al. Acute renal failure due to nontraumatic rhabdomyolysis. , 1976, Annals of internal medicine.