Stability, electronic, and optical properties of two‐dimensional phosphoborane

The structure and properties of two‐dimensional phosphoborane sheets were computationally investigated using Density Functional Theory calculations. The calculated phonon spectrum and band structure point to dynamic stability and allowed characterization of the predicted two‐dimensional material as a direct‐gap semiconductor with a band gap of ~1.5 eV. The calculation of the optical properties showed that the two‐dimensional material has a relatively small absorptivity coefficient. The parameters of the mechanical properties characterize the two‐dimensional phosphoborane as a relatively soft material, similar to the monolayer of MoS2. Assessment of thermal stability by the method of molecular dynamics indicates sufficient stability of the predicted material, which makes it possible to observe it experimentally.

[1]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[2]  J. Kysar,et al.  Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description , 2009 .

[3]  J. Bell,et al.  Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties. , 2016, Angewandte Chemie.

[4]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[5]  Tohru Sato,et al.  Pseudo Jahn–Teller Origin of Buckling Distortions in Two-Dimensional Triazine-Based Graphitic Carbon Nitride (g-C3N4) Sheets , 2015 .

[6]  Qiang Zhu,et al.  Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions , 2013, 1309.2596.

[7]  L. Colombo,et al.  Elastic properties of hydrogenated graphene , 2010, 1010.5186.

[8]  Chengchun Tang,et al.  Prediction of Two-Dimensional Boron Sheets by Particle Swarm Optimization Algorithm , 2012 .

[9]  G. Su,et al.  T-carbon: a novel carbon allotrope. , 2011, Physical review letters.

[10]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[11]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[12]  P. Pyykkö Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. , 2015, The journal of physical chemistry. A.

[13]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[14]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[15]  R. M. Minyaev,et al.  Low-energy barrier B4 ring puckering rearrangement of 1,6-diaza-closo-hexaborane: an ab initio study , 2001 .

[16]  Xiaojun Wu,et al.  Exploration of Structures of Two-Dimensional Boron-Silicon Compounds with sp(2) Silicon. , 2013, The journal of physical chemistry letters.

[17]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[18]  A. Mahmood,et al.  Production, properties and potential of graphene , 2010, 1002.0370.

[19]  B. Yakobson,et al.  Can Two-Dimensional Boron Superconduct? , 2016, Nano letters.

[20]  Kwang Soo Kim,et al.  Graphene and Graphene Analogs toward Optical, Electronic, Spintronic, Green-Chemical, Energy-Material, Sensing, and Medical Applications. , 2017, ACS applied materials & interfaces.

[21]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[22]  E. Ganz,et al.  Post-anti-van't Hoff-Le Bel motif in atomically thin germanium-copper alloy film. , 2015, Physical chemistry chemical physics : PCCP.

[23]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[24]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[25]  S. Ciraci,et al.  Prediction of a two-dimensional crystalline structure of nitrogen atoms , 2015 .

[26]  Alessandro Molle,et al.  Buckled two-dimensional Xene sheets. , 2017, Nature materials.

[27]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[28]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[29]  Reply to "Comment on 'two-dimensional boron monolayer sheets'". , 2013, ACS nano.

[30]  E. Dill,et al.  Theory of Elasticity of an Anisotropic Elastic Body , 1964 .

[31]  N. Tkachenko,et al.  Chemical bonding analysis of excited states using the adaptive natural density partitioning method. , 2019, Physical chemistry chemical physics : PCCP.

[32]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[35]  S. Bhowmick,et al.  Polymorphism of two-dimensional boron. , 2012, Nano letters.

[36]  R. M. Minyaev,et al.  Supertetrahedrane—A new possible carbon allotrope , 2010 .

[37]  Zhongfang Chen,et al.  A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon. , 2018, Nanoscale horizons.

[38]  E. Ganz,et al.  Revealing unusual chemical bonding in planar hyper-coordinate Ni2Ge and quasi-planar Ni2Si two-dimensional crystals. , 2015, Physical chemistry chemical physics : PCCP.

[39]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[40]  Lingling Wang,et al.  Stability and electronic structure of two-dimensional arsenic phosphide monolayer , 2018 .

[41]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[42]  R. M. Minyaev,et al.  Computational Prediction of the Low‐Temperature Ferromagnetic Semiconducting 2D SiN Monolayer , 2019, physica status solidi (b).

[43]  R. Ruoff,et al.  Mechanical properties of atomically thin boron nitride and the role of interlayer interactions , 2017, Nature Communications.

[44]  R. M. Minyaev,et al.  Computer Design of Two-Dimensional Monolayers with Octahedral 1,6-Carborane Units , 2019, Russian Journal of Inorganic Chemistry.

[45]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[46]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[47]  E. Ganz,et al.  Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. , 2015, Journal of the American Chemical Society.

[48]  E. Jimenez-Izal,et al.  Prediction of Two-Dimensional Phase of Boron with Anisotropic Electric Conductivity. , 2017, The journal of physical chemistry letters.

[49]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[50]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[51]  Giulia Galli,et al.  β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. , 2013, Chemical reviews.

[52]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[53]  V. V. Koval,et al.  From Two‐ to Three‐Dimensional Structures of a Supertetrahedral Boran Using Density Functional Calculations , 2017, Angewandte Chemie.

[54]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[55]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[56]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[57]  Wojciech Pisula,et al.  Graphenes as potential material for electronics. , 2007, Chemical reviews.

[58]  R. M. Minyaev,et al.  Superoctahedral two-dimensional metallic boron with peculiar magnetic properties. , 2019, Physical chemistry chemical physics : PCCP.

[59]  Alexander I Boldyrev,et al.  Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. , 2013, Physical chemistry chemical physics : PCCP.

[60]  Yanchao Wang,et al.  Two-Dimensional C4N Global Minima: Unique Structural Topologies and Nanoelectronic Properties , 2017 .

[61]  R. M. Minyaev Supertetrahedrane and its boron analogs , 2012, Russian Chemical Bulletin.

[62]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[63]  Vlado A. Lubarda,et al.  On the elastic moduli and compliances of transversely isotropic and orthotropic materials , 2008 .

[64]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[65]  A. Du,et al.  Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet. , 2016, Nano letters.

[66]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[67]  Heyuan Zhu,et al.  The electronic, optical, and thermodynamic properties of borophene from first-principles calculations , 2016, 1601.00140.

[68]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .