Effect of WC addition on microstructure and properties of powder metallurgy CoCrNi medium entropy alloy

[1]  P. Dai,et al.  The effect of Si addition on the heterogeneous grain structure and mechanical properties of CrCoNi medium entropy alloy , 2022, Materials Science and Engineering: A.

[2]  M. Mehmood,et al.  Microstructural evolution and mechanical characterization of a WC-reinforced CoCrFeNi HEA matrix composite , 2022, Scientific Reports.

[3]  Q. Yu,et al.  High Frequency Magnetic Behavior of FeCoNiMnxAl1-x High-entropy Alloys Regulated by Ferromagnetic Transformation , 2021, Journal of Alloys and Compounds.

[4]  A. Guitton,et al.  Plasticity induced by nanoindentation in a CrCoNi medium-entropy alloy studied by accurate electron channeling contrast imaging revealing dislocation-low angle grain boundary interactions , 2021 .

[5]  N. Stepanov,et al.  Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys , 2021 .

[6]  D. Raabe,et al.  Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy , 2020 .

[7]  Yan-qing Yang,et al.  Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy , 2019 .

[8]  S. Chowdhury,et al.  Evolution of Substructure of a Non-equiatomic FeMnCrCo High Entropy Alloy Deformed at Ambient Temperature , 2019, Metallurgical and Materials Transactions A.

[9]  P. Dai,et al.  Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering , 2019, Vacuum.

[10]  W. Fang,et al.  Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys , 2019, Journal of Alloys and Compounds.

[11]  C. Dong,et al.  Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance , 2019, Journal of Materials Science & Technology.

[12]  Q. Liu,et al.  Slip transmission for dislocations across incoherent twin boundary , 2019, Scripta Materialia.

[13]  Hyoung-Seop Kim,et al.  Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering , 2019, Journal of Alloys and Compounds.

[14]  M. L. Young,et al.  A novel method to enhance CSL fraction, tensile properties and work hardening in complex concentrated alloys ― Lattice distortion effect , 2018, Materials Science and Engineering: A.

[15]  Bin Liu,et al.  Microstructures and wear behaviour of (FeCoCrNi)1-x(WC)x high entropy alloy composites , 2018, International Journal of Refractory Metals and Hard Materials.

[16]  Z. Fan,et al.  Effect of Al on microstructure and mechanical properties of cast CrCoNi medium-entropy alloy , 2018, China Foundry.

[17]  Tianwei Liu,et al.  Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys , 2018 .

[18]  Ł. Rogal,et al.  CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3 , 2017 .

[19]  Ł. Rogal,et al.  Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy , 2017 .

[20]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[21]  Wei Guo,et al.  The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe 40.4 Ni 11.3 Mn 34.8 Al 7.5 Cr 6 high entropy alloys , 2017 .

[22]  Zijiao Zhang,et al.  Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy , 2017, Nature Communications.

[23]  N. Jones,et al.  High-entropy alloys: a critical assessment of their founding principles and future prospects , 2016 .

[24]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[25]  D. V. Panov,et al.  Structure and properties of advanced materials obtained by Spark Plasma Sintering , 2015 .

[26]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[27]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[28]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[29]  E. Lavernia,et al.  Strengthening Mechanisms in a High-Strength Bulk Nanostructured Cu-Zn-Al Alloy Processed Via Cryomilling and Spark Plasma Sintering , 2013 .

[30]  E. Lavernia,et al.  Twins in cryomilled and spark plasma sintered Cu–Zn–Al , 2012 .

[31]  D. Raabe,et al.  Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging , 2011 .

[32]  U. Waag,et al.  The influence of carbide dissolution on the erosion–corrosion properties of cast tungsten carbide/Ni-based PTAW overlays , 2011 .

[33]  D. Raabe,et al.  The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel , 2010 .

[34]  David J. Srolovitz,et al.  Low-angle grain boundary migration in the presence of extrinsic dislocations , 2009 .

[35]  H. Maier,et al.  The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals , 2007 .

[36]  Jien-Wei Yeh,et al.  Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content , 2006 .

[37]  S. Hamamda,et al.  Microstructural study of tungsten influence on Co–Cr alloys , 2005 .

[38]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[39]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[40]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[41]  H. Kleykamp Thermodynamic studies on chromium carbides by the electromotive force (emf) method , 2001 .

[42]  Wen-Cheng J. Wei,et al.  Effects of material properties and testing parameters on wear properties of fine-grain zirconia (TZP) , 2000 .

[43]  A. L. Greer,et al.  Confusion by design , 1993, Nature.

[44]  Yong Liu,et al.  Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder , 2016 .

[45]  Julie M. Schoenung,et al.  Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy , 2014 .

[46]  B. Vandenberghe,et al.  T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants—Properties and experience☆ , 2008 .

[47]  Z. Rong Dissolution of tungsten carbide particulates(WC) in the matrix of WC reinforced gray cast iron matrix composite , 2007 .

[48]  Zhilin Liu,et al.  Study of solid solution strengthening of alloying element with phase structure factors , 2003 .

[49]  T. Gladman,et al.  Precipitation hardening in metals , 1999 .

[50]  F. R. de Boer,et al.  Model predictions for the enthalpy of formation of transition metal alloys II , 1977 .

[51]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .