Memristor: Part I—The Underlying Physics and Conduction Mechanism

Memristor switching and observed I-V characteristics are explained using the underlying physics of the device in terms of the formation and rupture of filaments. Three different conduction mechanisms, namely-filament-assisted tunneling current, bulk tunneling current, and currents flowing through low and high conductivity filaments give rise to the total current in memristive systems. Heating of filaments during current conduction may reduce the ROFF/RON ratio of the device by increasing its ON resistance. In case of an organic layer, this issue can be circumvented by suitably increasing the organic layer thickness. Effects of different parameters on lifetime of memristors as resistance-switching random access memory have also been investigated.

[1]  K. Kinoshita,et al.  Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model , 2007 .

[2]  Charles T. Lynch,et al.  Practical Handbook of Materials Science , 1989 .

[3]  D. Shen,et al.  Study of the Ti/Al2O3 interface , 1995 .

[4]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[5]  Masashi Kawasaki,et al.  Resistance switching memory device with a nanoscale confined current path , 2007 .

[6]  H. Frederikse Recent Studies on Rutile (TiO2) , 1961 .

[7]  John Paul Strachan,et al.  The switching location of a bipolar memristor: chemical, thermal and structural mapping , 2011, Nanotechnology.

[8]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[9]  H. Tuller,et al.  Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide , 1999 .

[10]  Masayuki Inuzuka,et al.  Electrical conductivity of plasma-sprayed titanium oxide (rutile) coatings , 1991 .

[11]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[12]  R. Waser,et al.  Resistive switching of rose bengal devices: A molecular effect? , 2006 .

[13]  J. Pascual,et al.  Resolved Quadrupolar Transition in TiO 2 , 1977 .

[14]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[15]  D. V. Sulway,et al.  The detection of current filaments in VO2 thin-film switches using the scanning electron microscope , 1973 .

[16]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[17]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[18]  J. Kevorkian,et al.  Bistable switching in organic thin films , 1971 .

[19]  Krishnamurthy Murali,et al.  Effect of sinusoidal excitation on the Chua's circuit , 1992 .

[20]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[21]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[22]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[23]  Gang Chen,et al.  Thermoelectric property studies on bulk TiOx with x from 1 to 2 , 2007 .

[24]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Peng Li,et al.  Nonvolatile memristor memory: Device characteristics and design implications , 2009, 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers.

[26]  D. L. Staebler,et al.  Electrocoloration in SrTiO3: Vacancy Drift and Oxidation-Reduction of Transition Metals , 1971 .

[27]  Zhenjun Wang,et al.  Giant negative magnetoresistance of spin polarons in magnetic semiconductors–chromium-doped Ti2O3 thin films , 2005 .

[28]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[29]  T. Richardson,et al.  Langmiur–Blodgett studies of silicon(IV) phthalocyanine bis(trihexylsilyoxide) and its optical properties , 2009 .

[30]  Leon O. Chua,et al.  Autoassociative Memory Cellular Neural Networks , 2010, Int. J. Bifurc. Chaos.

[31]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[32]  Jim Hutchby,et al.  Assessment of the Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting (April 6-7, 2010) , 2010 .

[33]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[34]  Frederick T. Chen,et al.  Formation and instability of silver nanofilament in Ag-based programmable metallization cells. , 2010, ACS nano.

[35]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[36]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[37]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[38]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[39]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[40]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[41]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[42]  Lee,et al.  Thermal conductivity of sputtered oxide films. , 1995, Physical review. B, Condensed matter.

[43]  R. Pinto Filamentary switching and memory action in thin anodic oxides , 1971 .

[44]  C. S. Ramachandran,et al.  Electrochemical process of titanium extraction , 2007 .