Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature

[1]  M. F. Shannon,et al.  The granulocyte-macrophage colony-stimulating factor/interleukin 3 locus is regulated by an inducible cyclosporin A-sensitive enhancer. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  W. Leonard,et al.  Essential Role of Signal Transducer and Activator of Transcription (Stat)5a but Not Stat5b for Flt3-Dependent Signaling , 2000, The Journal of experimental medicine.

[3]  R. Muise-Helmericks,et al.  Signal transduction and the Ets family of transcription factors , 2000, Oncogene.

[4]  W. Berdel,et al.  Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. , 2000, Blood.

[5]  M. Karin,et al.  AP-1 as a regulator of cell life and death , 2002, Nature Cell Biology.

[6]  D. Gilliland,et al.  FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. , 2002, Blood.

[7]  G. Ehninger,et al.  Analysis of Flt3-activating Mutations in 979 Patients with Acute Myelogenous Leukemia: Association with Fab Subtypes and Identification of Subgroups with Poor Prognosis , 2022 .

[8]  C. Miething,et al.  Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. , 2003, Blood.

[9]  J. Radich,et al.  The role of FLT3 in haematopoietic malignancies , 2003, Nature Reviews Cancer.

[10]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[11]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[12]  Gordon K. Smyth,et al.  Use of within-array replicate spots for assessing differential expression in microarray experiments , 2005, Bioinform..

[13]  V. Giancotti Breast cancer markers. , 2006, Cancer letters.

[14]  A. Bert,et al.  A Modular Enhancer Is Differentially Regulated by GATA and NFAT Elements That Direct Different Tissue-Specific Patterns of Nucleosome Positioning and Inducible Chromatin Remodeling , 2007, Molecular and Cellular Biology.

[15]  S. Fröhling,et al.  Deregulation of signaling pathways in acute myeloid leukemia. , 2008, Seminars in oncology.

[16]  C. Preudhomme,et al.  Cooperating gene mutations in acute myeloid leukemia: a review of the literature , 2008, Leukemia.

[17]  T. Golub,et al.  Id1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells. , 2008, Blood.

[18]  Jinshui Fan,et al.  Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. , 2008, Blood.

[19]  Kristina Masson,et al.  Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. , 2009, Cellular signalling.

[20]  Andrew J. Bannister,et al.  JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin , 2009, Nature.

[21]  Bas J. Wouters,et al.  Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling , 2009, Haematologica.

[22]  H. Lodish,et al.  ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. , 2009, Blood.

[23]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[24]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[25]  David S. Lapointe,et al.  ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data , 2010, BMC Bioinformatics.

[26]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[27]  W. Ouwehand,et al.  Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. , 2010, Cell stem cell.

[28]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[29]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[30]  E. Shaulian AP-1--The Jun proteins: Oncogenes or tumor suppressors in disguise? , 2010, Cellular signalling.

[31]  A. Tanay,et al.  Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models. , 2011, Blood.

[32]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[33]  Brent S. Pedersen,et al.  Pybedtools: a flexible Python library for manipulating genomic datasets and annotations , 2011, Bioinform..

[34]  S. Gygi,et al.  Survey of Activated FLT3 Signaling in Leukemia , 2011, PloS one.

[35]  W. Wiktor-Jedrzejczak,et al.  Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. , 2011, Blood.

[36]  M. Gut,et al.  Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters , 2011, Nature Structural &Molecular Biology.

[37]  P. Cockerill Structure and function of active chromatin and DNase I hypersensitive sites , 2011, The FEBS journal.

[38]  J. Carroll,et al.  Pioneer transcription factors: establishing competence for gene expression. , 2011, Genes & development.

[39]  M. Gut,et al.  Supplemental information for : “ CpG islands and GC content dictate nucleosome depletion in a transcription independent manner at mammalian promoters ” , 2012 .

[40]  H. Klein,et al.  Leukemia Gene Atlas – A Public Platform for Integrative Exploration of Genome-Wide Molecular Data , 2012, PloS one.

[41]  H. Stunnenberg,et al.  ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. , 2012, Blood.

[42]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[43]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[44]  Salam A. Assi,et al.  Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding , 2012, Leukemia.

[45]  Chunaram Choudhary,et al.  SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control. , 2010, Blood.

[46]  N. Speck,et al.  Gata2 is required for HSC generation and survival , 2013, The Journal of experimental medicine.

[47]  So Yeon Kwon,et al.  Chronic growth factor receptor signaling and lineage inappropriate gene expression in AML: The polycomb connection , 2013, Cell cycle.

[48]  Yang Shi,et al.  Emerging roles for chromatin as a signal integration and storage platform , 2013, Nature Reviews Molecular Cell Biology.

[49]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[50]  C. Glass,et al.  Impact of natural genetic variation on enhancer selection and function , 2013, Nature.

[51]  M. Morgan,et al.  Selection for Evi1 activation in myelomonocytic leukemia induced by hyperactive signaling through wild-type NRas , 2013, Oncogene.

[52]  Jason Piper,et al.  Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data , 2013, Nucleic acids research.

[53]  Salam A. Assi,et al.  Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal , 2014, Cell reports.

[54]  I. Weissman,et al.  Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission , 2014, Proceedings of the National Academy of Sciences.

[55]  A. Bosserhoff,et al.  AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. , 2014, European journal of cell biology.

[56]  R. Majeti,et al.  Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis , 2014, Leukemia.

[57]  J. Martens,et al.  The genome-wide molecular signature of transcription factors in leukemia. , 2014, Experimental hematology.

[58]  R. Siebert,et al.  Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma , 2014, Proceedings of the National Academy of Sciences.

[59]  G. Huang,et al.  Posttranslational modifications of RUNX1 as potential anticancer targets , 2014, Oncogene.

[60]  D. Tenen,et al.  NF-κB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia , 2014, Leukemia.

[61]  H. Martin,et al.  Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. , 2014, Cell reports.