Developments in pseudo‐random number generators

Monte Carlo simulations have become a common practice to evaluate a proposed statistical procedure, particularly when it is analytically intractable. Validity of any simulation study relies heavily on the goodness of random variate generators for some specified distributions, which in turn is based on the successful generation of independent variates from the uniform distribution. However, a typical computer-generated pseudo-random number generator (PRNG) is a deterministic algorithm and we know that no PRNG is capable of generating a truly random uniform sequence. Since the foundation of a simulation study is built on the PRNG used, it is extremely important to design a good PRNG. We review some recent developments on PRNGs with nice properties such as high-dimensional equi-distribution, efficiency, long period length, portability, and efficient parallel implementations. For further resources related to this article, please visit the WIREs website.

[1]  Lih-Yuan Deng,et al.  Random number generators for multiprocessor systems , 1994 .

[2]  Lih-Yuan Deng,et al.  Scalable parallel multiple recursive generators of large order , 2009, Parallel Comput..

[3]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[4]  Makoto Matsumoto,et al.  Twisted GFSR generators , 1992, TOMC.

[5]  Pierre L'Ecuyer,et al.  Distribution properties of multiply-with-c arry random number generators , 1997, Math. Comput..

[6]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[7]  H. C. Williams,et al.  Some primes of the form (ⁿ-1)/(-1) , 1979 .

[8]  D. M. Titterington,et al.  Cross-correlation between simultaneously generated sequences of pseudo-random uniform deviates , 1993 .

[9]  Yannis Smaragdakis,et al.  Flexible reference trace reduction for VM simulations , 2003, TOMC.

[10]  Pierre L'Ecuyer,et al.  Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.

[11]  Lih-Yuan Deng,et al.  A system of high-dimensional, efficient, long-cycle and portable uniform random number generators , 2003, TOMC.

[12]  Pierre L'Ecuyer,et al.  An Object-Oriented Random-Number Package with Many Long Streams and Substreams , 2002, Oper. Res..

[13]  H. Solomon,et al.  On Combining Pseudorandom Number Generators , 1979 .

[14]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Watson Primitive Polynomials (Mod 2) , 1962 .

[16]  D. Murdoch,et al.  P-Values are Random Variables , 2008 .

[17]  Lih-Yuan Deng,et al.  Generation of Uniform Variates from Several Nearly Uniformly Distributed Variables , 1990 .

[18]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[19]  Mark Goresky,et al.  Efficient multiply-with-carry random number generators with maximal period , 2003, TOMC.

[20]  Rui Guo,et al.  Improving Random Number Generators in the Monte Carlo simulations via twisting and combining , 2008, Comput. Phys. Commun..

[21]  Lih-Yuan Deng,et al.  Issues on Computer Search for Large Order Multiple Recursive Generators , 2008 .

[22]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[23]  Joel N. Franklin Equidistribution of Matrix-Power Residues Modulo One , 1964 .

[24]  Holger Grothe,et al.  Matrix generators for pseudo-random vector generation , 1987 .

[25]  Pei-Chi Wu,et al.  Multiplicative, congruential random-number generators with multiplier ± 2k1 ± 2k2 and modulus 2p - 1 , 1997, TOMS.

[26]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .

[27]  H. Zeisel,et al.  A Remark on Algorithm as 183. An Efficient and Portable Pseudo‐Random Number Generator , 1986 .

[28]  Lih-Yuan Deng,et al.  Large-Order Multiple Recursive Generators with Modulus 231 - 1 , 2012, INFORMS J. Comput..

[29]  G. Marsaglia The Structure of Linear Congruential Sequences , 1972 .

[30]  Michael Mascagni Parallel Linear Congruential Generators with Prime Moduli , 1998, Parallel Comput..

[31]  Michael Mascagni,et al.  Testing parallel random number generators , 2003, Parallel Comput..

[32]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[33]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[34]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[35]  Lih-Yuan Deng,et al.  Generalized Mersenne Prime Number and Its Application to Random Number Generation , 2004 .

[36]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[37]  Michael Mascagni,et al.  SPRNG: A Scalable Library for Pseudorandom Number Generation , 1999, PP.

[38]  Lih-Yuan Deng,et al.  Design and Implementation of Efficient and Portable Multiple Recursive Generators with Few Zero Coefficients , 2008 .

[39]  Lih-Yuan Deng,et al.  Efficient and portable multiple recursive generators of large order , 2005, TOMC.

[40]  Lih-Yuan Deng,et al.  64-Bit and 128-bit DX random number generators , 2010, Computing.

[41]  Lih-Yuan Deng,et al.  Efficient computer search of large-order multiple recursive pseudo-random number generators , 2012, J. Comput. Appl. Math..

[42]  P. D. Coddington,et al.  Analysis of random number generators using Monte Carlo simulation , 1993, cond-mat/9309017.

[43]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[44]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[45]  Ted G. Lewis,et al.  Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.

[46]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[47]  Lih-Yuan Deng,et al.  Parallel Random Number Generators Based on Large Order Multiple Recursive Generators , 2009 .