Phase Capacity Characteristics for Signalized Interchange and Intersection Approaches

Described in this paper are the development, calibration, and application of models that collectively can be used to predict the saturation flow rate and start-up lost time of through movements at signalized interchange ramp terminals and other closely spaced intersections. These models were calibrated with data collected at 12 interchanges. It is concluded that saturation flow rate decreases as the distance to the downstream queue decreases. This queue is formed by the signal at a downstream intersection. Saturation flow rate increases with traffic pressure, as quantified by traffic volume per cycle per lane. It is recommended that an ideal saturation flow rate of 2,000 passenger-car units per hour of green per lane be used for signalized ramp terminals and other high-volume intersections in urban areas. The data collected for this research indicate that start-up lost time increases with saturation flow rate.