Efflux pumps in bacteria: overview, clinical relevance, and potential pharmaceutical target.

Trends in microbial resistance suggest a dramatic increase in the frequency of reports of multi-drug efflux pumps in bacteria and fungi. Although it is difficult to determine whether this increase is due to the increased attention given to this resistance mechanism, or an increase in frequency, efflux pumps are becoming an important consideration in resistance emergence. These efflux pumps comprise at least four different classes in Gram-positive and Gram-negative bacteria, as well as in Streptomyces and fungi. As more efflux pumps are characterised and studied, both biochemically and structurally, the opportunity for intervention may arise.

[1]  J. Stephenson Worry grows as antibiotic-resistant bacteria continue to gain ground. , 1997, JAMA.

[2]  M. C. Moken,et al.  Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci , 1997, Antimicrobial agents and chemotherapy.

[3]  M. Raymond,et al.  The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter , 1997, Journal of bacteriology.

[4]  S. Levy,et al.  Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli , 1997, Journal of bacteriology.

[5]  W. Yuan,et al.  mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae , 1997, Antimicrobial agents and chemotherapy.

[6]  S. Levy,et al.  Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon , 1997, Antimicrobial agents and chemotherapy.

[7]  L. Gutmann,et al.  Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae , 1997, Antimicrobial agents and chemotherapy.

[8]  M. Raymond,et al.  AP1-mediated Multidrug Resistance in Saccharomyces cerevisiae Requires FLR1 Encoding a Transporter of the Major Facilitator Superfamily* , 1997, The Journal of Biological Chemistry.

[9]  A. Neyfakh Natural functions of bacterial multidrug transporters. , 1997, Trends in microbiology.

[10]  W. Konings,et al.  Drug efflux proteins in multidrug resistant bacteria. , 1997, Biological chemistry.

[11]  Lori A. S. Snyder,et al.  The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. , 1997, Microbiology.

[12]  M. McManus,et al.  Mechanisms of bacterial resistance to antimicrobial agents. , 1997, American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists.

[13]  N. Baranova,et al.  Apparent involvement of a multidrug transporter in the fluoroquinolone resistance of Streptococcus pneumoniae , 1997, Antimicrobial agents and chemotherapy.

[14]  E. Balzi,et al.  Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters , 1997, Molecular and General Genetics MGG.

[15]  N. Vázquez-Laslop,et al.  Efflux of the Natural Polyamine Spermidine Facilitated by the Bacillus subtilis Multidrug Transporter Blt* , 1997, The Journal of Biological Chemistry.

[16]  S. Schuldiner,et al.  Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr , 1997, Journal of bacteriology.

[17]  K. Poole,et al.  Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[18]  D. Kelly,et al.  Reduced intracellular accumulation of azole antifungal results in resistance in Candida albicans isolate NCPF 3363. , 1997, FEMS microbiology letters.

[19]  D. Sanglard,et al.  Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. , 1997, Microbiology.

[20]  J. Weiner,et al.  Expression of Escherichia coli TehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps , 1997, Antimicrobial agents and chemotherapy.

[21]  G. Guidotti,et al.  Effect of ATP binding cassette/multidrug resistance proteins on ATP efflux of Saccharomyces cerevisiae. , 1997, Biochemical and biophysical research communications.

[22]  D. Kelly,et al.  Resistance to fluconazole and cross‐resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Δ5,6‐desaturation , 1997, FEBS letters.

[23]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[24]  I. Paulsen,et al.  Proton-dependent multidrug efflux systems , 1996, Microbiological reviews.

[25]  W. Jb Drug efflux as a mechanism of resistance. , 1996 .

[26]  J. Rood,et al.  Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens , 1996, Antimicrobial agents and chemotherapy.

[27]  J. Fralick Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli , 1996, Journal of bacteriology.

[28]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[29]  M. Roberts,et al.  Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. , 1996, FEMS microbiology reviews.

[30]  T. Hallstrom,et al.  Multiple Pdr1p/Pdr3p Binding Sites Are Essential for Normal Expression of the ATP Binding Cassette Transporter Protein-encoding Gene PDR5* , 1996, The Journal of Biological Chemistry.

[31]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[32]  J. Sutcliffe,et al.  Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system , 1996, Antimicrobial agents and chemotherapy.

[33]  P. Miller,et al.  Overlaps and parallels in the regulation of intrinsic multiple‐antibiotic resistance in Escherichia coli , 1996, Molecular microbiology.

[34]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[35]  H. Nikaido,et al.  Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump , 1996, Journal of bacteriology.

[36]  Tomomi Kimura,et al.  Asp‐285 of the metal‐tetracycline/H+ antiporter of Escherichia coli is essential for substrate binding , 1996, FEBS letters.

[37]  A. M. George,et al.  Multidrug resistance in enteric and other gram-negative bacteria. , 1996, FEMS microbiology letters.

[38]  I. Paulsen,et al.  Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Desnottes,et al.  New targets and strategies for the development of antibacterial agents. , 1996, Trends in biotechnology.

[40]  H. Jenkinson Ins and Outs of Antimicrobial Resistance: Era of the Drug Pumps , 1996, Journal of dental research.

[41]  T. Weisbrod,et al.  Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. Nikaido,et al.  AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants , 1996, Journal of bacteriology.

[43]  D. Livermore,et al.  Mechanisms of resistance to beta-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. , 1995, Journal of medical microbiology.

[44]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[45]  T. Parkinson,et al.  Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata , 1995, Antimicrobial agents and chemotherapy.

[46]  A. Goffeau,et al.  Identification and Characterization of SNQ2, a New Multidrug ATP Binding Cassette Transporter of the Yeast Plasma Membrane (*) , 1995, The Journal of Biological Chemistry.

[47]  S. Taylor,et al.  Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated , 1995, Journal of bacteriology.

[48]  S. Levy,et al.  Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli , 1995, Journal of bacteriology.

[49]  A. Yamaguchi,et al.  The tetracycline efflux protein encoded by the tet(K) gene from Staphylococcus aureus is a metal‐tetracycline/H+ antiporter , 1995, FEBS letters.

[50]  A. Matin,et al.  EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB , 1995, Journal of bacteriology.

[51]  D W Stephen,et al.  The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae , 1995, Molecular microbiology.

[52]  P. Miller,et al.  The MarR Repressor of the Multiple Antibiotic Resistance (mar) Operon in Escherichia coli: Prototypic Member of a Family of Bacterial Regulatory Proteins Involved in Sensing Phenolic Compounds , 1995, Molecular medicine.

[53]  N. Masuda,et al.  Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[54]  A. Yamaguchi,et al.  A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter , 1995, Antimicrobial agents and chemotherapy.

[55]  S. Sen Gupta,et al.  Mechanisms and clinical impact of antifungal drug resistance. , 1994, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[56]  M. Roberts,et al.  Epidemiology of tetracycline-resistance determinants. , 1994, Trends in microbiology.

[57]  F. Odds,et al.  Molecular mechanisms of drug resistance in fungi. , 1994, Trends in microbiology.

[58]  M. Ouellette,et al.  Microbial multidrug-resistance ABC transporters. , 1994, Trends in microbiology.

[59]  K. Poole Bacterial multidrug resistance--emphasis on efflux mechanisms and Pseudomonas aeruginosa. , 1994, The Journal of antimicrobial chemotherapy.

[60]  F. Odds,et al.  Pathogenesis of Candida infections. , 1994, Journal of the American Academy of Dermatology.

[61]  D. Livermore,et al.  Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance , 1994, Antimicrobial Agents and Chemotherapy.

[62]  D. Livermore,et al.  Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin , 1994, Antimicrobial Agents and Chemotherapy.

[63]  S. Levy,et al.  Molecular requirements for the inhibition of the tetracycline antiport protein and the effect of potent inhibitors on the growth of tetracycline-resistant bacteria. , 1994, Journal of medicinal chemistry.

[64]  H. Nikaido,et al.  Prevention of drug access to bacterial targets: permeability barriers and active efflux. , 1994, Science.

[65]  D. Rothstein,et al.  Mutations in the tetA(B) gene that cause a change in substrate specificity of the tetracycline efflux pump , 1994, Antimicrobial Agents and Chemotherapy.

[66]  K. Lewis,et al.  Multidrug resistance pumps in bacteria: variations on a theme. , 1994, Trends in biochemical sciences.

[67]  J. Bloom,et al.  Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. , 1994, Journal of medicinal chemistry.

[68]  A. Jimenez,et al.  The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin. , 1993, European journal of biochemistry.

[69]  D. Heinrichs,et al.  Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine , 1993, Molecular microbiology.

[70]  J. Hearst,et al.  Molecular cloning and characterization of acrA and acrE genes of Escherichia coli , 1993, Journal of bacteriology.

[71]  K. Bertrand,et al.  Sequence of a class E tetracycline resistance gene from Escherichia coli and comparison of related tetracycline efflux proteins , 1993, Journal of bacteriology.

[72]  S. Levy,et al.  Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli , 1993, Journal of bacteriology.

[73]  S. Levy,et al.  Inhibition of the tetracycline efflux antiport protein by 13-thio-substituted 5-hydroxy-6-deoxytetracyclines. , 1993, Journal of medicinal chemistry.

[74]  J. Cove,et al.  Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. , 1993, The Journal of antimicrobial chemotherapy.

[75]  G. Kaatz,et al.  Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter , 1993, Antimicrobial Agents and Chemotherapy.

[76]  I. Chopra Efflux-based antibiotic resistance mechanisms: the evidence for increasing prevalence. , 1992, The Journal of antimicrobial chemotherapy.

[77]  K. Lewis,et al.  Emr, an Escherichia coli locus for multidrug resistance. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[78]  N. Masuda,et al.  Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[79]  H. Neu,et al.  The Crisis in Antibiotic Resistance , 1992, Science.

[80]  I. Paulsen,et al.  Membrane transport proteins: implications of sequence comparisons. , 1992, Current opinion in cell biology.

[81]  S. Levy,et al.  Active efflux mechanisms for antimicrobial resistance , 1992, Antimicrobial Agents and Chemotherapy.

[82]  L. Grinius,et al.  A staphylococcal multidrug resistance gene product is a member of a new protein family. , 1992, Plasmid.

[83]  S. Schwarz,et al.  Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus , 1992, Antimicrobial Agents and Chemotherapy.

[84]  A. Neyfakh,et al.  The multidrug efflux transporter of Bacillus subtilis is a structural and functional homolog of the Staphylococcus NorA protein , 1992, Antimicrobial Agents and Chemotherapy.

[85]  S. Michaelis,et al.  Mutational analysis of the yeast a‐factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily. , 1991, The EMBO journal.

[86]  J. Rosner,et al.  Regulation of ompF porin expression by salicylate in Escherichia coli , 1991, Journal of bacteriology.

[87]  R. Leclercq,et al.  Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria , 1991, Antimicrobial Agents and Chemotherapy.

[88]  L. Chen,et al.  Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[89]  T. Littlejohn,et al.  Efflux‐mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline‐ and sugar‐transport proteins , 1990, Molecular microbiology.

[90]  R. Heinrikson,et al.  Gene duplication in the evolution of the two complementing domains of gram-negative bacterial tetracycline efflux proteins. , 1990, Gene.

[91]  D. Hooper,et al.  Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction , 1989, Antimicrobial Agents and Chemotherapy.

[92]  S. Levy Evolution and spread of tetracycline resistance determinants. , 1989, The Journal of antimicrobial chemotherapy.

[93]  A. Scarpa,et al.  Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO , 1988, Antimicrobial Agents and Chemotherapy.

[94]  A. Goffeau,et al.  The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. , 1987, The Journal of biological chemistry.

[95]  B. Lampson,et al.  Novel mechanism for plasmid-mediated erythromycin resistance by pNE24 from Staphylococcus epidermidis , 1986, Antimicrobial Agents and Chemotherapy.

[96]  A. M. George,et al.  Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline , 1983, Journal of bacteriology.

[97]  D. Haas,et al.  Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes , 1982, Antimicrobial Agents and Chemotherapy.

[98]  S. Levy,et al.  Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[99]  S. Luria,et al.  Genetics and Physiology of Colicin-tolerant Mutants of Escherichia coli , 1967, Journal of bacteriology.

[100]  L. Piddock,et al.  Mechanisms of Resistance to Fluoroquinolones , 1998 .

[101]  R. Hancock,et al.  The bacterial outer membrane as a drug barrier. , 1997, Trends in microbiology.

[102]  M. Day,et al.  Antibiotic and biocide resistance in bacteria. , 1996, Microbios.

[103]  D. Y. Thomas,et al.  Functional expression of P-glycoprotein in Saccharomyces cerevisiae confers cellular resistance to the immunosuppressive and antifungal agent FK520. , 1994, Molecular and cellular biology.

[104]  W. Hillen,et al.  Mechanisms underlying expression of Tn10 encoded tetracycline resistance. , 1994, Annual review of microbiology.

[105]  I. Pastan,et al.  Biochemistry of multidrug resistance mediated by the multidrug transporter. , 1993, Annual review of biochemistry.

[106]  K. Chater,et al.  Nucleotide sequence analysis reveals similarities between proteins determining methylenomycin A resistance in Streptomyces and tetracycline resistance in eubacteria. , 1987, Gene.

[107]  E. Whitney The tolC locus in Escherichia coli K12. , 1971, Genetics.