Fabrication of p-n Junction With an n-Type Silicon Nanoparticle Layer by Using Infrared Fiber Laser Illumination

This paper investigates the manufacturability-aware process of p-n junction formation for photovoltaic cells involving with Si nanoparticle layer. The furnace-based dopant diffusion process of forming a p-n junction consumes a substantial amount of energy. In addition, repetitive production steps prevent the possibility of Si ink-based cells integrating onto flexible substrates. This research examined the local heating dopant diffusion process by using a fiber laser at a wavelength of 1064 nm. The infrared beam is delivered onto the wafer stack with a nanoparticle carbon layer and n-type Si ink layer on p-type Si substrates. The nanoparticle carbon film absorbs infrared beam energy and converts photon energy as a thermal source to diffuse the n-type dopant in Si ink into the p-type Si wafer. The Si ink in this paper contains a mixture of Si nanoparticles and an n-type spin-on dopant solution. The TEM results show that Si nanoparticles are uniformly dispersed on the Si wafer surface. This research investigated sheet resistance as a function of laser parameters, including laser power, scanning speed, and pulse frequency for the samples coated with Si ink. Secondary ion mass spectroscopy measurements indicate the presence of an n-type dopant in p-type substrates, with an approximate diffusion depth of 100 nm. The results indicate that the proposed infrared laser treatment technique is promising for the formation of p-n junctions with Si ink-based photovoltaic cells.

[1]  G. Schwuttke,et al.  Silicon diodes made by laser irradiation , 1968 .

[2]  Ulrich Klug,et al.  Laser ablation of SiO2 for locally contacted Si solar cells with ultra‐short pulses , 2007 .

[3]  H. Wiggers,et al.  Excimer laser doping using highly doped silicon nanoparticles , 2013 .

[4]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[5]  Martin A. Green,et al.  Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport , 2010 .

[6]  Martin A. Green,et al.  Progress in Laser-Crystallized Thin-Film Polycrystalline Silicon Solar Cells: Intermediate Layers, Light Trapping, and Metallization , 2014, IEEE Journal of Photovoltaics.

[7]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[8]  Chin-Chin Tsai Recent development in Flexible Electronics , 2011, 16th Opto-Electronics and Communications Conference.

[9]  H. Antoniadis Silicon Ink high efficiency solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[10]  M. Green,et al.  Thin‐film polycrystalline silicon solar cells formed by diode laser crystallisation , 2013 .

[11]  Mool C. Gupta,et al.  Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures , 2011 .

[12]  Jeffrey E. Cotter,et al.  Optical and electrical properties of laser texturing for high‐efficiency solar cells , 2006 .

[13]  Martin A. Green,et al.  A 19.8% efficient honeycomb multicrystalline silicon solar cell with improved light trapping , 1999 .

[14]  Gavin Conibeer,et al.  Silicon quantum dot nanostructures for tandem photovoltaic cells , 2008 .

[15]  J. Luther,et al.  Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. , 2013, Accounts of chemical research.

[16]  G. Conibeer,et al.  Si solid-state quantum dot-based materials for tandem solar cells , 2012 .

[17]  Arthur J. Nozik,et al.  Size-Dependent Spectroscopy of InP Quantum Dots , 1997 .

[18]  Xiaodong Pi,et al.  Spin-coating silicon-quantum-dot ink to improve solar cell efficiency , 2011 .

[19]  W. Shen,et al.  A statistical exploration of multiple exciton generation in silicon quantum dots and optoelectronic application , 2012 .

[20]  L. A. Dobrzański,et al.  Laser surface treatment of multicrystalline silicon for enhancing optical properties , 2008 .

[21]  Ralf Preu,et al.  Selective laser ablation of SiNx layers on textured surfaces for low temperature front side metallizations , 2009 .

[22]  A. Nozik Multiple exciton generation in semiconductor quantum dots , 2008 .

[23]  M. Green,et al.  Thin-Film Polycrystalline Silicon Solar Cells Formed by Diode Laser Crystallisation , 2012 .

[24]  R. Russell,et al.  Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter , 2015 .

[25]  Shujuan Huang,et al.  Progress With Silicon-Based Tandem Cells Using Group IV Quantum Dots in a Dielectric Matrix , 2008 .

[26]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[27]  Surajit Chatterjee,et al.  Size-Dependent Differential Interaction of Allylamine-Capped Silicon Quantum Dots with Surfactant Assemblies Studied Using Photoluminescence Spectroscopy and Imaging Technique , 2013 .

[28]  A. Goldstein The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors , 1996 .

[29]  Gavin Conibeer,et al.  Silicon quantum dot/crystalline silicon solar cells , 2008, Nanotechnology.

[30]  Ortega,et al.  Electronic structure approach for complex silicas. , 1995, Physical review. B, Condensed matter.

[31]  Kamjou Mansour,et al.  Nonlinear optical properties of carbon-black suspensions (ink) , 1992 .

[32]  Deren Yang,et al.  Enhancing the Efficiency of Multicrystalline Silicon Solar Cells by the Inkjet Printing of Silicon-Quantum-Dot Ink , 2012 .

[33]  J. C. Muller,et al.  Silicon nanocrystals as light converter for solar cells , 2004 .

[34]  S. Varlamov,et al.  Diode laser processed crystalline silicon thin-film solar cells , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[35]  Eric Mazur,et al.  Pulsed-laser hyperdoping and surface texturing for photovoltaics , 2011 .

[36]  F. Hong,et al.  Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique. , 2013, Journal of vacuum science and technology. B, Nanotechnology & microelectronics : materials, processing, measurement, & phenomena : JVST B.

[37]  P. Engelhart,et al.  Laser Ablation of Passivating SINx Layers for Locally Contacting Emitters of High-Efficiency Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[38]  S. Wenham,et al.  Deep junction laser doping for contacting buried layers in silicon solar cells , 2013 .

[39]  Large-Area Diode Laser Defect Annealing of Polycrystalline Silicon Solar Cells , 2012, IEEE Transactions on Electron Devices.

[40]  Uwe R. Kortshagen,et al.  Plasma‐Assisted Synthesis of Silicon Nanocrystal Inks , 2007 .

[41]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[42]  Howard W. H. Lee,et al.  Photoluminescence as a Function of Aggregated Size from n-Butyl-Terminated Silicon Nanoclusters , 2000 .

[43]  A. Nozik Nanoscience and nanostructures for photovoltaics and solar fuels. , 2010, Nano letters.