Extremal eigenvalue problems for composite membranes, II

Given an open bounded connected set Ω ⊂RN and a prescribed amount of two homogeneous materials of different density, for smallk we characterize the distribution of the two materials in Ω that extremizes thekth eigenvalue of the resulting clamped membrane. We show that these extremizers vary continuously with the proportion of the two constituents. The characterization of the extremizers in terms of level sets of associated eigenfunctions provides geometric information on their respective interfaces. Each of these results generalizes toN dimensions the now classical one-dimensional work of M. G. Krein.

[1]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[2]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[3]  F. Trèves Basic Linear Partial Differential Equations , 1975 .

[4]  S. Kesavan Homogenization of elliptic eigenvalue problems: Part 1 , 1979 .

[5]  On the geometry of level sets of positive solutions of semilinear elliptic equations , 1988 .

[6]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[7]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[8]  D. Varberg Convex Functions , 1973 .

[9]  C. Jouron Sur un problème d'optimisation ou la contrainte porte sur la fréquence fondamentale , 1978 .

[10]  S. Mikhlin,et al.  Variational Methods in Mathematical Physics , 1965 .

[11]  N. Bourbaki Topological Vector Spaces , 1987 .

[12]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[13]  S. Friedland Extremal eigenvalue problems defined for certain classes of functions , 1977 .

[14]  H. Attouch Variational convergence for functions and operators , 1984 .

[15]  Kazimierz Malanowski,et al.  An Example of a Max-Min Problem in Partial Differential Equations , 1970 .

[16]  J. Toland,et al.  A variational method for boundary value problems with discontinuous nonlinearities , 1980 .

[17]  Bronisław Knaster,et al.  Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .

[18]  Tosio Kato Perturbation theory for linear operators , 1966 .

[19]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[20]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[21]  Paolo Marcellini,et al.  Sulla convergenza delle soluzioni di disequazioni variazionali , 1976 .

[22]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .