AUTOMATED COMPLAINTS CLASSIFICATION USING MODIFIED NAZIEF-ADRIANI STEMMING ALGORITHM AND NAIVE BAYES CLASSIFIER

Complaints provided by customers in the use of products or services is a feedback of the quality of products or services used by customers. In Universitas Multimedia Nusantara (UMN), students can deliver their complaints through an organization, i.e. Dewan Keluarga Besar Mahasiswa (DKBM) UMN. All students’ complaints are manually classified into predefined categories by DKBM so that it can be delivered to related division. It costs a lot of time and human resources of DKBM UMN, and also caused misclassification of incoming complaints. In e-complaint system, a method that can be used to support efficient complaint processing is the use of automatic classification system because it can save both time and human resources. Naive Bayes Classifier (NBC) algorithm is one the algorithm that can be used to classify text automatically and for the preprocessing stage, modified Nazief-Adriani stemming algorithm is used. Based on the study conducted, it can be concluded that Naive Bayes Classifier algorithm with modified Nazief-Adriani stemming algorithm is able to do the classification well. This is indicated from the precision value of 91.86%, the recall value of 84.48%, and the f-1 score value of 86.29% for the ratio of training data and test data 90:10, and an average accuracy of 86%.

[1]  Susi Indriyani,et al.  PENGARUH PENANGANAN KELUHAN (COMPLAINT HANDLING) TERHADAP KEPERCAYAAN DAN KOMITMEN MAHASISWA PADA PERGURUAN TINGGI SWASTA DI BANDAR LAMPUNG , 2016 .

[2]  Rifqi Abdul Aziz Klasifikasi Topik pada Lirik Lagu dengan Metode Multinomial Naive Bayes , 2016 .

[3]  Jie Yin,et al.  Squibs: Evaluation Methods for Statistically Dependent Text , 2015, CL.

[4]  F. M. Dewanto,et al.  Pengembangan Multimedia Interaktif 3D dengan Structured Methodology Materi Sistem Pencernaan Manusia , 2015 .

[5]  Aida Indriani,et al.  Klasifikasi Data Forum dengan menggunakan Metode Naïve Bayes Classifier , 2014 .

[6]  Yunqian Ma,et al.  Imbalanced Datasets: From Sampling to Classifiers , 2013 .

[7]  Rushi Longadge,et al.  Class Imbalance Problem in Data Mining Review , 2013, ArXiv.

[8]  Rok Blagus,et al.  SMOTE for high-dimensional class-imbalanced data , 2013, BMC Bioinformatics.

[9]  Syahril Effendi,et al.  Klasifikasi Konten Berita Dengan Metode Text Mining , 2012 .

[10]  R. Razali,et al.  Complaint handling theoretical framework , 2012, 2012 International Conference on Computer & Information Science (ICCIS).

[11]  V Korde,et al.  TEXT CLASSIFICATION AND CLASSIFIERS: A SURVEY , 2012 .

[12]  Saurabh Pal,et al.  Data Mining: A prediction for performance improvement using classification , 2012, ArXiv.

[13]  S. M. Kamruzzaman,et al.  Text Classification using Data Mining , 2010, ArXiv.

[14]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[15]  Riandri Anggono,et al.  Analisis Perbandingan Metode K-Nearest Neighbor dan Naive Bayes Classifier dalam Klasifikasi Teks , 2009 .

[16]  Alexandra Daniela Zaugg,et al.  Online Complaint Management @Swisscom: A Case Study , 2008 .

[17]  D. V. Poel,et al.  Improving customer complaint management by automatic email classification using linguistic style features as predictors , 2008, Decis. Support Syst..

[18]  Alex A. Freitas,et al.  A review of performance evaluation measures for hierarchical classifiers , 2007 .

[19]  Kemal Polat,et al.  Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform , 2007, Appl. Math. Comput..

[20]  Hewijin Christine Jiau,et al.  Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem , 2006 .

[21]  Mohd Shamrie Sainin,et al.  Text classification using Naive Bayes: An experiment to conference paper , 2005 .

[22]  F. Tala A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia , 2003 .

[23]  David R. Karger,et al.  Tackling the Poor Assumptions of Naive Bayes Text Classifiers , 2003, ICML.

[24]  Shlomo Argamon,et al.  Automatically Categorizing Written Texts by Author Gender , 2002, Lit. Linguistic Comput..

[25]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[26]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[27]  S. Vijayarani,et al.  Preprocessing Techniques for Text Mining-An Overview Dr , 2015 .

[28]  Suresh Jain,et al.  Evaluation of Stemming and Stop Word Techniques on Text Classification Problem , 2015 .

[29]  Ahmad Fathan Hidayatullah,et al.  ANALISIS SENTIMEN DAN KLASIFIKASI KATEGORI TERHADAP TOKOH PUBLIK PADA TWITTER , 2014 .

[30]  Vincent Van Asch,et al.  Macro-and micro-averaged evaluation measures [ [ BASIC DRAFT ] ] , 2013 .

[31]  Yosef Ganisaputra Pembuatan Aplikasi Data Mining Facebook dan Twitter dengan Naïve Bayes Classifier , 2013 .

[32]  E. Ernawati,et al.  APLIKASI PENDETEKSI KEMIRIPAN PADA DOKUMEN TEKS MENGGUNAKAN ALGORITMA NAZIEF & ADRIANI DAN METODE COSINE SIMILARITY , 2013 .

[33]  M. Petrovskiy,et al.  Supervised and Unsupervised Text Classification via Generic Summarization , 2012 .

[34]  Hugh E. Williams,et al.  Stemming Indonesian , 2005, ACSC.

[35]  Harry Zhang,et al.  The Optimality of Naive Bayes , 2004, FLAIRS.

[36]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.