Interior Eigenvalues from Density Matrix Expansions in Quantum Mechanical Molecular Dynamics

An accelerated polynomial expansion scheme to construct the density matrix in quantum mechanical molecular dynamics simulations is proposed. The scheme is based on recursive density matrix expansions, e.g., [A. M. N. Niklasson, Phys. Rev. B, 66 (2002), 155115], which are accelerated by a scale-and-fold technique [E. H. Rubensson, J. Chem. Theory Comput., 7 (2011), pp. 1233--1236]. The acceleration scheme requires interior eigenvalue estimates, which may be expensive and cumbersome to come by. Here we show how such eigenvalue estimates can be extracted from the recursive expansion by a simple and robust procedure at a negligible computational cost. Our method is illustrated with density functional tight-binding Born--Oppenheimer molecular dynamics simulations, where the computational effort is dominated by the density matrix construction. In our analysis we identify two different phases of the recursive polynomial expansion, the conditioning and purification phases, and we show that the acceleration repres...

[1]  Michele Benzi,et al.  Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..

[2]  Emanuel H. Rubensson,et al.  Assessment of density matrix methods for linear scaling electronic structure calculations , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Anders M N Niklasson,et al.  Energy conserving, linear scaling Born-Oppenheimer molecular dynamics. , 2012, The Journal of chemical physics.

[4]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[5]  Emanuel H. Rubensson,et al.  Bringing about matrix sparsity in linear‐scaling electronic structure calculations , 2011, J. Comput. Chem..

[6]  A. Holas Transforms for idempotency purification of density matrices in linear-scaling electronic-structure calculations , 2001 .

[7]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[8]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[9]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[10]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[11]  A. Voter,et al.  Kernel Polynomial Approximations for Densities of States and Spectral Functions , 1996 .

[12]  Matt Challacombe,et al.  A simplified density matrix minimization for linear scaling self-consistent field theory , 1999 .

[13]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[14]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[15]  Sara Zahedi,et al.  Computation of interior eigenvalues in electronic structure calculations facilitated by density matrix purification. , 2008, The Journal of chemical physics.

[16]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[17]  M. Tuckerman Ab initio molecular dynamics: basic concepts, current trends and novel applications , 2002 .

[18]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[19]  Nicolas Bock,et al.  Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation. , 2009, The Journal of chemical physics.

[20]  Joost VandeVondele,et al.  Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase. , 2012, Journal of chemical theory and computation.

[21]  D R Bowler,et al.  Calculations for millions of atoms with density functional theory: linear scaling shows its potential , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  R. Mcweeny,et al.  The density matrix in self-consistent field theory I. Iterative construction of the density matrix , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Emanuel H. Rubensson,et al.  Density matrix purification with rigorous error control. , 2008, The Journal of chemical physics.

[24]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[25]  Kim,et al.  Total-energy global optimizations using nonorthogonal localized orbitals. , 1995, Physical review. B, Condensed matter.

[26]  Yihan Shao,et al.  Improved Fermi operator expansion methods for fast electronic structure calculations , 2003 .

[27]  Jaehoon Kim,et al.  Accelerated Purification Using Generalized Nonpurifying Intermediate Functions for Large-Scale Self-Consistent Field Calculations. , 2011, Journal of chemical theory and computation.

[28]  Matt Challacombe,et al.  Time-reversible Born-Oppenheimer molecular dynamics. , 2006, Physical review letters.

[29]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[30]  Emanuel H. Rubensson,et al.  Nonmonotonic Recursive Polynomial Expansions for Linear Scaling Calculation of the Density Matrix. , 2010, Journal of chemical theory and computation.

[31]  R. Silver,et al.  DENSITIES OF STATES OF MEGA-DIMENSIONAL HAMILTONIAN MATRICES , 1994 .

[32]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[33]  Yousef Saad,et al.  A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[34]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[35]  Stephan Irle,et al.  Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers , 2005 .

[36]  Anders M N Niklasson,et al.  Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units. , 2012, Journal of chemical theory and computation.

[37]  Phanish Suryanarayana,et al.  Optimized purification for density matrix calculation , 2013 .

[38]  Benedict Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Acknowledgements , 2005 .

[39]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[40]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[41]  B. Johansson,et al.  Geometric integration in Born-Oppenheimer molecular dynamics. , 2011, The Journal of chemical physics.

[42]  Martin Karplus,et al.  Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method. , 2011, The Journal of chemical physics.

[43]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[44]  Anders M. N. Niklasson,et al.  Wave function extended Lagrangian Born-Oppenheimer molecular dynamics , 2010 .

[45]  Anders M N Niklasson,et al.  Extended Born-Oppenheimer molecular dynamics. , 2008, Physical review letters.

[46]  Anders M. N. Niklasson,et al.  Trace resetting density matrix purification in O(N) self-consistent-field theory , 2003 .

[47]  Colombo,et al.  Efficient linear scaling algorithm for tight-binding molecular dynamics. , 1994, Physical review letters.

[48]  Barbara Kirchner,et al.  Real-world predictions from ab initio molecular dynamics simulations. , 2012, Topics in current chemistry.

[49]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[50]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[51]  Anders M. N. Niklasson,et al.  Fast method for quantum mechanical molecular dynamics , 2012, 1203.6836.

[52]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[53]  J. M. Martínez,et al.  Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations. , 2013, Journal of chemical theory and computation.

[54]  Peter Pulay,et al.  Fock matrix dynamics , 2004 .

[55]  Daw Model for energetics of solids based on the density matrix. , 1993, Physical review. B, Condensed matter.

[56]  Emanuel H. Rubensson Controlling Errors in Recursive Fermi-Dirac Operator Expansions with Applications in Electronic Structure Theory , 2012, SIAM J. Sci. Comput..

[57]  Martin,et al.  Unconstrained minimization approach for electronic computations that scales linearly with system size. , 1993, Physical review. B, Condensed matter.

[58]  Johnson,et al.  Modified Broyden's method for accelerating convergence in self-consistent calculations. , 1988, Physical review. B, Condensed matter.

[59]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[60]  Michael Methfessel,et al.  Crystal structures of zirconia from first principles and self-consistent tight binding , 1998 .

[61]  B. Johansson,et al.  Higher-order symplectic integration in Born-Oppenheimer molecular dynamics. , 2009, The Journal of chemical physics.

[62]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[63]  David A Mazziotti Towards idempotent reduced density matrices via particle-hole duality: McWeeny's purification and beyond. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  William W. Hager,et al.  Multilevel domain decomposition for electronic structure calculations , 2007, J. Comput. Phys..

[65]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .