A Case Study on the Parametric Occurrence of Multiple Steady States
暂无分享,去创建一个
Matthew England | James H. Davenport | Dima Grigoriev | Thomas Sturm | Vladimir P. Gerdt | Russell J. Bradford | Hassan Errami | Andreas Weber | Ovidiu Radulescu | Marek Kosta | Charles Tapley Hoyt | J. Davenport | D. Grigoriev | V. Gerdt | A. Weber | T. Sturm | O. Radulescu | M. England | Hassan Errami | R. Bradford | M. Kosta | C. Hoyt
[1] Matthew D. Johnston,et al. A note on "MAPK networks and their capacity for multistationarity due to toric steady states" , 2014, 1407.5651.
[2] Alicia Dickenstein,et al. The Structure of MESSI Biological Systems , 2016, SIAM J. Appl. Dyn. Syst..
[3] Badal Joshi,et al. A survey of methods for deciding whether a reaction network is multistationary , 2014, 1412.5257.
[4] Carsten Conradi,et al. Catalytic constants enable the emergence of bistability in dual phosphorylation , 2014, Journal of The Royal Society Interface.
[5] Changbo Chen,et al. Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.
[6] Elisenda Feliu,et al. Identifying parameter regions for multistationarity , 2016, PLoS Comput. Biol..
[7] Mercedes Pérez Millán,et al. MAPK's networks and their capacity for multistationarity due to toric steady states. , 2014, Mathematical biosciences.
[8] Jörg Raisch,et al. Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. , 2008, Mathematical biosciences.
[9] M. Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .
[10] Dongming Wang,et al. Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.
[11] S. Schuster,et al. Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity , 1991 .
[12] Matthew England,et al. The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree , 2016, CASC.
[13] Melanie I. Stefan,et al. BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models , 2010, BMC Systems Biology.
[14] Bernd Sturmfels,et al. Algebraic Systems Biology: A Case Study for the Wnt Pathway , 2015, Bulletin of Mathematical Biology.
[15] Dima Grigoriev,et al. Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..
[16] Alicia Dickenstein,et al. Toric dynamical systems , 2007, J. Symb. Comput..
[17] Matthew England,et al. Improving the Use of Equational Constraints in Cylindrical Algebraic Decomposition , 2015, ISSAC.
[18] Changbo Chen,et al. Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..
[19] Thomas Sturm,et al. REDLOG: computer algebra meets computer logic , 1997, SIGS.
[20] Volker Weispfenning,et al. Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.
[21] George E. Collins,et al. Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..
[22] Jonathan D. Hauenstein,et al. Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .
[23] Hoon Hong,et al. Testing Stability by Quantifier Elimination , 1997, J. Symb. Comput..
[24] B. Kholodenko,et al. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.
[25] U. Bhalla,et al. Emergent properties of networks of biological signaling pathways. , 1999, Science.
[26] Jan Verschelde,et al. Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .
[27] Dongming Wang,et al. Stability analysis of biological systems with real solution classification , 2005, ISSAC.
[28] U. Bhalla,et al. Complexity in biological signaling systems. , 1999, Science.