A Case Study on the Parametric Occurrence of Multiple Steady States

We consider the problem of determining multiple steady states for positive real values in models of biological networks. Investigating the potential for these in models of the mitogen-activated protein kinases (MAPK) network has consumed considerable effort using special insights into the structure of corresponding models. Here we apply combinations of symbolic computation methods for mixed equality/inequality systems, specifically virtual substitution, lazy real triangularization and cylindrical algebraic decomposition. We determine multistationarity of an 11-dimensional MAPK network when numeric values are known for all but potentially one parameter. More precisely, our considered model has 11 equations in 11 variables and 19 parameters, 3 of which are of interest for symbolic treatment, and furthermore positivity conditions on all variables and parameters.

[1]  Matthew D. Johnston,et al.  A note on "MAPK networks and their capacity for multistationarity due to toric steady states" , 2014, 1407.5651.

[2]  Alicia Dickenstein,et al.  The Structure of MESSI Biological Systems , 2016, SIAM J. Appl. Dyn. Syst..

[3]  Badal Joshi,et al.  A survey of methods for deciding whether a reaction network is multistationary , 2014, 1412.5257.

[4]  Carsten Conradi,et al.  Catalytic constants enable the emergence of bistability in dual phosphorylation , 2014, Journal of The Royal Society Interface.

[5]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[6]  Elisenda Feliu,et al.  Identifying parameter regions for multistationarity , 2016, PLoS Comput. Biol..

[7]  Mercedes Pérez Millán,et al.  MAPK's networks and their capacity for multistationarity due to toric steady states. , 2014, Mathematical biosciences.

[8]  Jörg Raisch,et al.  Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. , 2008, Mathematical biosciences.

[9]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[10]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[11]  S. Schuster,et al.  Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity , 1991 .

[12]  Matthew England,et al.  The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree , 2016, CASC.

[13]  Melanie I. Stefan,et al.  BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models , 2010, BMC Systems Biology.

[14]  Bernd Sturmfels,et al.  Algebraic Systems Biology: A Case Study for the Wnt Pathway , 2015, Bulletin of Mathematical Biology.

[15]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[16]  Alicia Dickenstein,et al.  Toric dynamical systems , 2007, J. Symb. Comput..

[17]  Matthew England,et al.  Improving the Use of Equational Constraints in Cylindrical Algebraic Decomposition , 2015, ISSAC.

[18]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..

[19]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[20]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[21]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[22]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[23]  Hoon Hong,et al.  Testing Stability by Quantifier Elimination , 1997, J. Symb. Comput..

[24]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.

[25]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[26]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[27]  Dongming Wang,et al.  Stability analysis of biological systems with real solution classification , 2005, ISSAC.

[28]  U. Bhalla,et al.  Complexity in biological signaling systems. , 1999, Science.