Use of Intravital Microscopy to Study the Microvascular Behavior of Microbubble‐Based Ultrasound Contrast Agents

Please cite this paper as: Schneider M, Broillet A, Tardy I, Pochon S, Bussat P, Bettinger T, Helbert A, Costa M, Tranquart F. Use of intravital microscopy to study the microvascular behavior of microbubble‐based ultrasound contrast agents. Microcirculation19: 245–259, 2012.

[1]  S S Segal,et al.  The behavior of sonicated albumin microbubbles within the microcirculation: a basis for their use during myocardial contrast echocardiography. , 1989, Circulation research.

[2]  G. Schmid-Schönbein,et al.  Activated leukocytes and endothelial cells enhance retention of ultrasound contrast microspheres containing perfluoropropane in inflamed venules. , 2005, International journal of cardiology.

[3]  Luc Bouwens,et al.  Quantitation, tissue distribution and proliferation kinetics of kupffer cells in normal rat liver , 1986, Hepatology.

[4]  K. Ley Histamine can induce leukocyte rolling in rat mesenteric venules. , 1994, The American journal of physiology.

[5]  S. Gray Rat spinotrapezius muscle preparation for microscopic observation of the terminal vascular bed. , 1973, Microvascular research.

[6]  Y. Imai,et al.  Optical Microscopic Findings of the Behavior of Perflubutane Microbubbles Outside and Inside Kupffer Cells During Diagnostic Ultrasound Examination , 2008, Investigative radiology.

[7]  D. Cosgrove,et al.  The first phase I study of a novel ultrasound contrast agent (BR14): assessment of safety and efficacy in liver and kidneys. , 2002, Academic Radiology.

[8]  F. Villanueva Myocardial perfusion imaging using ultrasound contrast agents: now or never? , 2010, JACC. Cardiovascular imaging.

[9]  J. Gross,et al.  A transparent access chamber for the rat dorsal skin fold. , 1979, Microvascular research.

[10]  T. Skotland,et al.  Hepatic clearance of Sonazoid perfluorobutane microbubbles by Kupffer cells does not reduce the ability of liver to phagocytose or degrade albumin microspheres , 2003, Cell and Tissue Research.

[11]  S. Kaul,et al.  Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second-generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. , 1996, Journal of the American College of Cardiology.

[12]  B. Giraudeau,et al.  [Real-time contrast-enhanced ultrasound in the evaluation of focal liver lesions: diagnostic efficacy and economical issues from a French multicentric study]. , 2009, Journal de radiologie.

[13]  François Tranquart,et al.  Ultrasound Molecular Imaging of VEGFR2 in a Rat Prostate Tumor Model Using BR55 , 2010, Investigative radiology.

[14]  H. Bohlen,et al.  Preparation of rat intestinal muscle and mucosa for quantitative microcirculatory studies. , 1976, Microvascular research.

[15]  S. Kaul,et al.  Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes , 2000, Circulation.

[16]  Eric Tom,et al.  Myocardial Ischemic Memory Imaging With Molecular Echocardiography , 2007, Circulation.

[17]  S S Gambhir,et al.  Molecular imaging: current status and emerging strategies. , 2010, Clinical radiology.

[18]  M. Kohno,et al.  Interaction with leukocytes: phospholipid-stabilized versus albumin-shell microbubbles. , 2004, Radiology.

[19]  G. Schmid-Schönbein,et al.  Mechanism of parenchymal enhancement of the liver with a microbubble-based US contrast medium: an intravital microscopy study in rats. , 2002, Radiology.

[20]  Jiri Sklenar,et al.  Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. , 2002, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[21]  Jonathan R Lindner,et al.  Molecular imaging with targeted contrast ultrasound. , 2007, Current opinion in biotechnology.

[22]  R. Bing,et al.  Studies of the coronary microcirculation of the cat. , 1971, The American journal of cardiology.

[23]  A. Beaudet,et al.  Sequential contribution of L- and P-selectin to leukocyte rolling in vivo , 1995, The Journal of experimental medicine.

[24]  Robin Hull,et al.  A good practice guide to the administration of substances and removal of blood, including routes and volumes , 2001, Journal of applied toxicology : JAT.

[25]  K. Messmer,et al.  In vivo fluorescence microscopy for quantitative analysis of the hepatic microcirculation in hamsters and rats. , 1991, European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes.

[26]  B. Duling The preparation and use of the hamster cheek pouch for studies of the microcirculation. , 1973, Microvascular research.

[27]  A. Beaudet,et al.  Absence of trauma-induced leukocyte rolling in mice deficient in both P- selectin and intercellular adhesion molecule 1 , 1996, The Journal of experimental medicine.

[28]  M. Bosio,et al.  Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) - Update 2008 , 2008, Ultraschall in der Medizin.

[29]  J. Correas,et al.  Échographie de contraste temps réel dans la prise en charge diagnostique des lésions nodulaires hépatiques : évaluation des performances diagnostiques et de l’impact économique sur une étude multicentrique française , 2009 .

[30]  U. Bagge,et al.  Microvascular Behavior and Effects of Sonazoid Microbubbles in the Cremaster Muscle of Rats After Local Administration , 2006, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[31]  A. Klibanov,et al.  Detection of Individual Microbubbles of Ultrasound Contrast Agents: Imaging of Free-Floating and Targeted Bubbles , 2004, Investigative radiology.

[32]  K W Ferrara,et al.  Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. , 2001, Biophysical journal.

[33]  J. Joslin Blood Collection Techniques in Exotic Small Mammals , 2009 .

[34]  H. Schäfers,et al.  The subepicardial microcirculation in heterotopically transplanted mouse hearts: an intravital multifluorescence microscopy study. , 2007, The Journal of thoracic and cardiovascular surgery.

[35]  F. Forsberg,et al.  Contrast-enhanced ultrasound for molecular imaging of angiogenesis , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[36]  S. Kaul,et al.  Myocardial and microcirculatory kinetics of BR14, a novel third-generation intravenous ultrasound contrast agent. , 2002, Journal of the American College of Cardiology.

[37]  R. Bing,et al.  Microbubble dynamics visualized in the intact capillary circulation. , 1984, Journal of the American College of Cardiology.

[38]  Jonathan R Lindner,et al.  Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. , 2009, Cardiovascular research.

[39]  H. Schäfers,et al.  Angiogenesis and microvascularization after cryothermia-induced myocardial infarction: A quantitative fluorescence microscopic study in rats , 1999, Basic Research in Cardiology.

[40]  S. Davis,et al.  Regulation of blood flow in the mammary microvasculature. , 1996, Journal of dairy science.

[41]  J. Lindner,et al.  Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. , 2007, European heart journal.

[42]  E. Schmidt,et al.  Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. , 1995, The American journal of physiology.

[43]  Harald Becher,et al.  Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. , 2008, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[44]  T. Sakuma,et al.  Detection of coronary stenosis and myocardial viability using a single intravenous bolus injection of BR14. , 2002, Journal of the American College of Cardiology.

[45]  Klaus Ley,et al.  Regulation of E‐Selectin, P‐Selectin, and Intercellular Adhesion Molecule 1 Expression in Mouse Cremaster Muscle Vasculature , 1997, Microcirculation.

[46]  Linda Chami,et al.  Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification--preliminary results. , 2011, Radiology.

[47]  S. Kaul,et al.  Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. , 2002, Journal of the American College of Cardiology.

[48]  Yasuo Ogasawara,et al.  Direct observation of epicardial coronary capillary hemodynamics during reactive hyperemia and during adenosine administration by intravital video microscopy. , 2005, American journal of physiology. Heart and circulatory physiology.

[49]  J. Willmann,et al.  Molecular ultrasound assessment of tumor angiogenesis , 2010, Angiogenesis.

[50]  Isabelle Tardy,et al.  BR55: A Lipopeptide-Based VEGFR2-Targeted Ultrasound Contrast Agent for Molecular Imaging of Angiogenesis , 2010, Investigative radiology.

[51]  A. DeMaria,et al.  Visualization of risk-area myocardium as a high-intensity, hyperenhanced "hot spot" by myocardial contrast echocardiography following coronary reperfusion: quantitative analysis. , 2003, Journal of the American College of Cardiology.

[52]  P. Burns,et al.  Microbubble-enhanced US in body imaging: what role? , 2010, Radiology.

[53]  K. Ley,et al.  Ultrasound Assessment of Inflammation and Renal Tissue Injury With Microbubbles Targeted to P-Selectin , 2001, Circulation.

[54]  S. Kaul,et al.  Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. , 2000, Circulation.

[55]  S. Kaul,et al.  Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. , 2000, Circulation.

[56]  K. Ley,et al.  Rapid leukocyte accumulation by "spontaneous" rolling and adhesion in the exteriorized rabbit mesentery. , 1991, International journal of microcirculation, clinical and experimental.

[57]  S. Arii,et al.  Crucial role of impaired Kupffer cell phagocytosis on the decreased Sonazoid‐enhanced echogenicity in a liver of a nonalchoholic steatohepatitis rat model , 2010, Hepatology research : the official journal of the Japan Society of Hepatology.

[58]  G. Born,et al.  Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls , 1972, The Journal of physiology.

[59]  S. Baez,et al.  An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. , 1973, Microvascular research.

[60]  P. Kubes,et al.  Leukocyte recruitment in the microcirculation: the rolling paradigm revisited. , 2001, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[61]  W. Horninger,et al.  Comparative efficiency of contrast-enhanced colour Doppler ultrasound targeted versus systematic biopsy for prostate cancer detection , 2010, European Radiology.