Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching

We report a nanocomposite material possessing large nonlinear optical coefficients and fast response simultaneously, which is made of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] doped with Ag nanoparticles. Under resonant excitation of the polymer matrix and Ag nanoparticles, the value of the nonlinear susceptibility reaches the order of 10−6 esu. A nonlinear response time of 35 ps is achieved due to the energy transfer from organic molecules to Ag nanoparticles. An ultrafast photonic crystal all-optical switching with an ultralow pump intensity of 0.2 MW/cm2 is realized.

[1]  Marin Soljacic,et al.  Ultralow-power all-optical switching , 2005 .

[2]  R. T. Phillips,et al.  Ultrafast dynamics of photoexcitations in conjugated polymers , 1997 .

[3]  J. Morgado,et al.  Conformational relaxation of p-phenylenevinylene trimers in solution studied by picosecond time-resolved fluorescence. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Chapter 1 – The Nonlinear Optical Susceptibility , 2003 .

[5]  M. Hasegawa,et al.  Ultrafast Optical Switching by using Nanocrystals of a Halogen‐Bridged Nickel‐Chain Compound Dispersed in an Optical Polymer , 2007 .

[6]  Ping Jiang,et al.  Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity , 2008 .

[7]  Jiping Huang,et al.  Enhanced nonlinear optical responses of materials: Composite effects , 2006 .

[8]  Robert Blum,et al.  Polymer photonic crystal slab waveguides , 2001 .

[9]  Fischer,et al.  Enhanced nonlinear optical response of composite materials. , 1995, Physical review letters.

[10]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[11]  Boyd,et al.  Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  N. Del Fatti,et al.  Ultrafast optical nonlinear properties of metal nanoparticles , 2001 .

[13]  Optical absorption in polymer glasses by laser calorimetry , 1980 .

[14]  Zhao-Qing Zhang,et al.  Multiple-scattering approach to finite-sized photonic band-gap materials , 1998 .

[15]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[16]  Y. Kivshar,et al.  Coupled-resonator-induced reflection in photonic-crystal waveguide structures. , 2008, Optics express.

[17]  Masaya Notomi,et al.  All-optical switches on a silicon chip realized using photonic crystal nanocavities , 2005 .

[18]  Satoshi Kawata,et al.  In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal , 2004 .

[19]  Yongfang Li,et al.  Investigations of third-order nonlinear optical response of poly (p-phenylenevinylene) derivatives by femtosecond optical Kerr effect , 2001 .

[20]  E. Borsella,et al.  Measurements of the Third-Order Nonlinear Susceptibility of Ag Nanoparticles in glass matrices in a Wide Spectral Range , 1998 .

[21]  H. Iwasaki,et al.  STM-excited molecular fluorescence from MEH-PPV conjugated polymer on Ag and Au , 2007 .

[22]  Werner J. Blau,et al.  Nonlinear Optical Properties of Porphyrins , 2007 .